Department of Electronics and Communication Engineering

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Fax: +91- 4362 - 264660Email: headece@pmu.eduWeb: www. pmu.edu

think • innovate • transform

M.TECH. – WIRELESS COMMUNICATIONS

REGULATIONS 2018

(TWO YEAR FULL TIME)

CURRICULUM AND SYLLABUS

SEMESTER I

	CODE NO.	COURSE TITLE	L	Т	Р	C	H
PCC	YWC101	Modern Digital Communication	3	0	3	3	3
PCC	YWC102	Wireless Communication	3	0	0	3	3
PCC	YWC103	Wireless Networks	3	0	0	3	3
PEC	YWC104*	Elective I	3	0	0	3	3
PEC	YWC105*	Elective – II	3	0	0	3	3
PCC-L	YWC106	Digital Communication Lab	0	0	1	1	2
MC	YRM107	Research Methodology and IPR	0	0	1	1	2
MC - Audit	YEGOE1	English for Research Paper Writing	2	0	0	0	2
PCC-L	YWC109	Wireless Networks Lab	2	0	0	0	2

Total Hours:23

Total Credits: 17

SEMESTER II

	CODE NO.	COURSE TITLE	L	Т	Р	С	Н
PCC	YWC201	Multi Carrier Communication	3	0	0	3	3
PCC	YWC202	Microwave Passive and Active Systems	3	0	0	3	3
PCC	YWC203	Advanced Radiation Systems	3	0	0	3	3
PEC	YWC204*	Elective – III	3	0	0	3	3
PEC	YWC205*	Elective IV	3	0	0	3	3
PCC-L	YWC206	Radio Frequency Systems lab	0	0	1	1	2
PCC-L	YWC207	Mini Project	0	0	1	2	4
MC- Audit	YPSOE1	Constitution of India	2	0	0	0	2

Total Hours: 21

Total Credits: 18

SEMESTER III

	CODE NO.	COURSE TITLE	L	Т	Р	C	Н
PCC	YWC301	Dissertation Phase – I	0	0	10	10	20
PEC	YWC302*	Elective -V	0	0	0	3	3
OEC	Open Elective	 Business Analytics Industrial Safety Operations Research Cost Management of Engineering Projects 	3	0	0	3	3

Total Hours: 26

Total Credits: 16

SEMESTER IV

	CODE NO.	COURSE TITLE	L	Т	Р	С	Н
PCC	YWC401	Dissertation Phase – II	0	0	16	16	32

Total Hours: 32

Total Credits: 16

Overall Credits:68

Legend PCC – Professional Core Course PEC- Professional Elective Course OEC – Open Elective Course PCC-L – Professional Core Course - Lab

LIST OF ELECTIVES

Sl.No	Code No	Course Title	L	Т	P	С
		ELECTIVE-I			1 1	
1	YWC104A	Radar communication	3	0	0	3
2	YWC104B	Mobile Satellite Communication	3	0	0	3
3	YWC104C	Advanced Digital Signal Processing	3	0	0	3
4	YWC104D	Free space optics	3	0	0	3
		ELECTIVE-II			<u> </u>	
1	YWC105A	Mathematics for Communication Systems	3	0	0	3
2	YWC105B	RF MEMS	3	0	0	3
3	YWC105C	Antenna Systems for Wireless Applications	3	0	0	3
4	YWC105D	Detection and Estimation Theory	3	0	0	3
		ELECTIVE-III			<u> </u>	
1	YWC204A	Wireless Network Security	3	0	0	3
2	YWC204B	Adhoc Networks	3	0	0	3
3	YWC 204C	High Performance Computing Networks	3	0	0	3
4	YWC204D	Internet of Things	3	0	0	3
		ELECTIVE-IV			<u> </u>	
1	YWC205A	Soft Computing	3	0	0	3
2	YWC205B	Multimedia Compression Techniques	3	0	0	3
3	YWC 205C	Software Defined Radio	3	0	0	3
4	YWC205D	Fundamentals of 5G Mobile and Wireless Technology	3	0	0	3
		ELECTIVE-V				
1	YWC2302A	Quality of Service in Wireless Communication	3	0	0	3
2	YWC302B	Telecom Network Planning and Management	3	0	0	3
3	YWC 302C	Regulation and Policy in the Telecommunications Industry	3	0	0	3

SUBCODE	SUB NAME L	Т	Р	С
YWC101	WIRELESS COMMUNICATION 3	1	0	4
UNIT I		i		9
WIRELESS C	HANNEL			
	wireless systems, Transmitter-Receiver Architecture-Wireless Standa			
	ing for the wireless channel-Free space, fixed transmit and receive ant			
U U	a; Reflecting wall, fixed antenna reflecting wall; moving antenna F			
	Power decay with distance and shadowing; Moving antenna, multiple			
· ·	of the wireless channel - The wireless channel as a linear time-varying s	•		
	del; A discrete-time baseband model; Additive white noise; Tim oppler spread and coherence time; Delay spread and coherence band			
	s-Rayleigh and Rician fading.	wium	,statis	lical
UNIT II				9
	DINT COMMUNICATION, DETECTION, DIVERSITY			-
	letection, Coherent detection From BPSK to QPSK: exploiting the deg	rees c	of freed	lom
	ne diversity Repetition coding, Time diversity code design			
	SM. Antenna diversity- Receive diversity Transmit diversity, sp			
•	IO schemes Frequency diversity-Basic concept Single-ca			
	Direct-sequence spread-spectrum, Orthogonal frequency division			
	ion over frequency-selective channels. Impact of channel un			
	ction for DS spread-spectrum, Channel estimation, other diversit			
UNIT III				9
CELLULAR S	SYSTEMS AND CHANNEL CAPACITY			
Multiple access	s and interference management, Narrowband and wideband syste	ems, C	Capacit	y of
	els -AWGN channel capacity, Resources of the AWGN channel, Line			
	nels, Capacity of fading channels, Multiuser capacity-uplink AWGN cl	nannel	, Dowr	link
	el, uplink fading channel, downlink fading channel			-
UNIT IV				9
	ATIAL MULTIPLEXING AND CHANNEL MODELING			
	capability of deterministic MIMO channels- Capacity via singular valued of MIMO channels- Modeling of MIMO fading channe			
	rchitectures -The V-BLAST architecture, Fast fading MIMO cl			
architectures	Tendectares The V DEFIST aremeetare, Tast rading millio en	luiiioi	11000	
UNIT V		,		9
MIMO II: MU	JLTIUSER COMMUNICATION			
•	ultiple receive antennas -MIMO uplink- Downlink with multiple to	ansmi	t anter	nas.
MIMO downlin	nk-Multiple antennas in cellular networks: a system view			
	LECTURE TUTORIA		ТОТА	L
	45 15		60	
REFERENCE				
	d Tse and Pramod Viswanath, Fundamentals of			
	ess Communication, Cambridge University Press, 2005.			
	appaport "Wireless Communication" Pearson Education, 2002	11. 1.4		. .
1	ee and D.G.Messerschmitt "Digital Communication" 2nd Ed., A	Illied I	ub,19	94.
Ed.,20				
5. Rappaj NJ, 19	port T.S., "Wireless Communications; Principles and Practice",	Prenti	ce Ha	11,
6 Lee W	96.			,
	96. C.Y., "Mobile Communications Engineering: Theory and Appl d Edition, McGraw-Hill, New York, 1998.	ication	ns",	,
Second	C.Y., "Mobile Communications Engineering: Theory and Appl		ns",	,

SUBCODE	SUB NAME L	Т	Р	С
YWC102	MODERN DIGITAL COMMUNICATION 3	0	1	4
UNIT I				8
CHANNEL Review of Auto	TRUM AND COMMUNICATION OVER MEMORYLESS correlation and Spectral density, PSD of a synchronous data pulse Continuous phase modulation – Scalar and vector communication of tion criteria.			
UNIT II				12
	ED DIGITALCOMMUNICATION			<u> </u>
Architecture an Linear block coo CONVOLUTIC Representation	d performance – Binary block codes; Orthogonal; Biorthogonal; des; Hamming; Golay; Cyclic; BCH ; Reed – Solomon codes. DNALCODED DIGITALCOMMUNICATION of codes using Polynomial, State diagram, Tree diagram, and T ques using Maximum likelihood, Viterbi algorithm, Sequential and Th	rellis	diagra	ım –
Turbo Coding				
UNIT III OPTIMUM RE				8
Shannon's chan	nel coding theorem; Channel capacity; Optimum Receiver; Correlation emodulator, properties of the matched filter, Frequency domain interp			
				9
UNIT IV COHERENTA Coded BPSK an correlation recein matched filter-co	ND NON-COHERENT COMMUNICATION nd DPSK demodulators Detections of Signals in Gaussian Noise: I ivers- coherent detection- detection of PSK and multiple PSK-BER oherent detection of FSK - BER analysis. Non coherent Detection: De	analy etectio	sis-sar on of D	gions nplec PSK
UNIT IV COHERENTA Coded BPSK an correlation recein matched filter-co FSK-BER analy channels.	nd DPSK demodulators Detections of Signals in Gaussian Noise: I ivers- coherent detection- detection of PSK and multiple PSK-BER	analy etectio	sis-sar on of D	tions nplec PSK ciciar
UNIT IV COHERENTA Coded BPSK an correlation recein matched filter-co FSK-BER analy channels. UNIT V	nd DPSK demodulators Detections of Signals in Gaussian Noise: In ivers- coherent detection- detection of PSK and multiple PSK-BER oherent detection of FSK - BER analysis. Non coherent Detection: De rsis- Performance of Non Coherent detection in Random phase, Ray	analy etectio	sis-sar on of D	gions npleo PSK
UNIT IV COHERENTA Coded BPSK an correlation recein matched filter-co FSK-BER analy channels. UNIT V COMMUNICA Channel and sou	ATIONS LINK ANALYSIS arces of signal loss, Received Signal Power and Noise Power, Link B oise Temperature, and System Temperature, Sample Link Analysis, S LECTURE PRACTICA	analy etectio yleigh udget Satellit	sis-sar on of D and R Analys e TOT	ions nplec PSK iciar 8 sis,
UNIT IV COHERENTA Coded BPSK an correlation recein matched filter-co FSK-BER analy channels. UNIT V COMMUNICA Channel and sou Noise Figure, N Repeaters	And DPSK demodulators Detections of Signals in Gaussian Noise: In avers- coherent detection- detection of PSK and multiple PSK-BER observent detection of FSK - BER analysis. Non coherent Detection: De- posis- Performance of Non Coherent detection in Random phase, Ray TIONS LINK ANALYSIS arces of signal loss, Received Signal Power and Noise Power, Link B oise Temperature, and System Temperature, Sample Link Analysis, S LECTURE PRACTICA 45 30	analy etectio yleigh udget Satellit	sis-sar n of D and R Analys	gions npleo PSK ciciar 8 sis,
UNIT IV COHERENTA Coded BPSK an correlation recein matched filter-constructed FSK-BER analy channels. UNIT V COMMUNICA Channel and sou Noise Figure, N Repeaters REFERENCES 1. M.K.S and de 2. Simon 3. Berna	And DPSK demodulators Detections of Signals in Gaussian Noise: I ivers- coherent detection- detection of PSK and multiple PSK-BER oherent detection of FSK - BER analysis. Non coherent Detection: De- traisis- Performance of Non Coherent detection in Random phase, Ray TIONS LINK ANALYSIS arces of signal loss, Received Signal Power and Noise Power, Link B oise Temperature, and System Temperature, Sample Link Analysis, S LECTURE PRACTICA 45 30 S Simon, S.M.Hinedi and W.C.Lindsey, Digital communication techniq tection, Prentice Hall India, New Delhi. 1995. n Haykin, Digital communications, John Wiley and sons, 2007 rd Sklar,"Digital Communications Fundamentals and Applicati	analy etectio yleigh udget Satellit L ues; Si	sis-sar n of D and R Analys e TOT 75 ignalli	tions nplec PSK ticiat 8 sis, AL
UNIT IV COHERENTA Coded BPSK an correlation recein matched filter-construction FSK-BER analy channels. UNIT V COMMUNICA Channel and sou Noise Figure, N Repeaters REFERENCES 1. M.K.S and de 2. Simon 3. Berna Edition 4. B.P.L Univer	And DPSK demodulators Detections of Signals in Gaussian Noise: In the observent detection - detection of PSK and multiple PSK-BER coherent detection of FSK - BER analysis. Non coherent Detection: De- train press. Performance of Non Coherent detection in Random phase, Ray TIONS LINK ANALYSIS The press of signal loss, Received Signal Power and Noise Power, Link B oise Temperature, and System Temperature, Sample Link Analysis, S LECTURE PRACTICA 45 30 5 Section, S.M.Hinedi and W.C.Lindsey, Digital communication techniq tection, Prentice Hall India, New Delhi. 1995. In Haykin, Digital communications, John Wiley and sons, 2007 rd Sklar, "Digital Communications Fundamentals and Application on, Prentice Hall PTR, Upper Sadle River, New Jersey, 2002. athi Modern digital and analog communication systems, 3 rd Editors press 1998.	analy etectio yleigh udget Satellit ML ues; S ons", tion, Q	sis-sar on of D and R Analys re TOT 75 ignalli 2 nd Oxfore	tions nplec PSK ticiat sis, AL ng
UNIT IV COHERENTA Coded BPSK an correlation recent matched filter-control FSK-BER analy channels. UNIT V COMMUNICA Channel and sou Noise Figure, N Repeaters REFERENCES 1. M.K.S and de 2. Simon 3. Berna Edition 4. B.P.L Unive 5. Hayki 6. M. K.	Ind DPSK demodulators Detections of Signals in Gaussian Noise: Ininverse coherent detection - detection of PSK and multiple PSK-BERoherent detection of FSK - BER analysis. Non coherent Detection: Detection: Detection in Random phase, RayConstrained of Non Coherent detection in Random phase, RayCTIONS LINK ANALYSISInverse of signal loss, Received Signal Power and Noise Power, Link Boise Temperature, and System Temperature, Sample Link Analysis, SCECTUREPRACTICA45Simon, S.M.Hinedi and W.C.Lindsey, Digital communication techniqtection, Prentice Hall India, New Delhi. 1995.n Haykin, Digital communications, John Wiley and sons, 2007rd Sklar, "Digital Communications Fundamentals and Application, Prentice Hall PTR, Upper Sadle River, New Jersey, 2002.athi Modern digital and analog communication systems, 3 rd Edit	analy etectio yleigh udget Satellit ues; Si ons", tion, Q it-I, II	sis-sar on of D and R Analys re TOT 75 ignalli 2 nd Oxfore	tions nplec PSK ticiar 8 sis, AL ng

YWC103	WIRELESS NETWORKS 3		<u>Т</u> 0	P 1	4
			v	-	
UNIT I					9
Wired transmiss applied wireless transmission, bro	D WIRELESS MAC LAYER ALTERNATIVES ion techniques: design of wireless modems, power efficiency, out a transmission techniques, short distance base band transmiss and Modems for higher speeds, diversity and smart receiving technique networks, integration of voice and data traffic	sion	, VV	VB p	puls
UNIT II					9
Wireless networ calculation, capa micro cell metho	CTWORK PLANNING AND OPERATION eks topologies, cellular topology, cell fundamentals signal to city expansion techniques, cell splitting, use of directional antennas d, overload cells, channels allocation techniques and capacity expan iques, DCA, mobility management, radio resources and power man orks.	s for nsior	cell FCA	secto A, cha	ring inne
UNIT III					9
	, IS - 95 CDMA reverse channel, pallert and frame formats in IS -				
forward channel GPRS and highe UNIT IV WIRELESS LA Historical overvi	in W-CDMA and CDMA 2000, reverse channels in W-CDMA r data rates, short messaging service in GPRS mobile application pr N ews of the LAN industry, evolution of the WLAN industry, wireless	and rotoo	CDl cols.	MA-2	200 9
forward channel GPRS and highe UNIT IV WIRELESS LA Historical overvi	in W-CDMA and CDMA 2000, reverse channels in W-CDMA r data rates, short messaging service in GPRS mobile application pr	and rotoo	CDl cols.	MA-2	200 9
forward channel GPRS and highe UNIT IV WIRELESS LA Historical overvi IEEE 802.11. Th UNIT V WPAN AND GI IEEE 802.15 W	in W-CDMA and CDMA 2000, reverse channels in W-CDMA r data rates, short messaging service in GPRS mobile application pr N ews of the LAN industry, evolution of the WLAN industry, wireless	and rotoc s hor LA	CDI cols. me ne N – 2 02.111 ice.	MA-2 etworl 2.	9 kin 9
forward channel GPRS and highe UNIT IV WIRELESS LA Historical overvi IEEE 802.11. Th UNIT V WPAN AND GI IEEE 802.15 W	in W-CDMA and CDMA 2000, reverse channels in W-CDMA r data rates, short messaging service in GPRS mobile application pr N ews of the LAN industry, evolution of the WLAN industry, wireless e PHY Layer, MAC Layer, wireless ATM, HYPER LAN, HYPER EOLOCATION SYSTEMS /PAN, Home RF, Bluetooth, interface between Bluetooth and nologies for wireless geolocation, geolocation standards for E.911 s	and rotoc s hor LA	CDI cols. me ne N – 2 02.111 ice.	MA-2 etworl 2. , wire	2000 9 king 9

SUBCO	ODE	SUB NAME	L	Т	P	С
YWC1	06	DIGITAL COMMUNICATION LAB	0	0	1	1
		LIST OF EXPERIMENTS				
1.		trate the theoretical and simulated BER for M-ary PSK				
2	MATLA					
۷.		tration of theoretical and simulated BER for M- QAM in				
3.		using MATLAB				
3. 4.	• •	a fading channel simulation BPSK/QPSK/QAM under Rayleigh channel				
4. 5.		arity: Encoding and Decoding				
5. 6.	• •	g code: Encoding and Decoding				
0. 7.	Equalize	с с с				
8. 9		equence Spread Spectrum on of OFDM IN MATLAB				
<i>.</i>		formance of BPSK using convolutional code under AWC	N abannal			
10.	DER per	formatice of BFSK using convolutional code under AwC	in channel			
REF	ERENCE	čS:				
http://w	ww.vlab.	co.in/				
http://2	03.110.24	0.139/				
<u>http://i</u>	itg.vlab.co	o.in/?sub=59&brch =163				
http://se	olve.nitk.a	ac.in/				
-						

WC107WIRELESS NETWORKS LAB LIST OF EXPERIMENTS00111. Analysis of wireless network with wireshark.1.Analysis of wireless network with wireshark.1.2. TCL scripts and Xgraph.3.Comparison of DSDV, DSR and AODV Routing protocols.1.3. Comparison of DSDV, DSR and AODV Routing protocols.1.1.4. Implementation of MAC algorithm for wireless network.1.1.5. Program to implement energy models for wireless nodes.1.1.6. Implementation of Gray hole and wormhole attack in Ns2.1.1.8. Decoment to collected effective resolute deliverent to each televant and televant and televant attack in Ns2.1.
 Analysis of wireless network with wireshark. TCL scripts and Xgraph. Comparison of DSDV, DSR and AODV Routing protocols. Implementation of MAC algorithm for wireless network. Program to implement energy models for wireless nodes. Implementation of symmetric key encryption using Ns2. Implementation of Gray hole and wormhole attack in Ns2.
 TCL scripts and Xgraph. Comparison of DSDV, DSR and AODV Routing protocols. Implementation of MAC algorithm for wireless network. Program to implement energy models for wireless nodes. Implementation of symmetric key encryption using Ns2. Implementation of Gray hole and wormhole attack in Ns2.
 Program to calculate packet delivery ratio, packet loss, throughput, end to end delay and routing overhead for Wireless Networks. Implementation of congestion control algorithms. Simulate a wireless Personal Area Networks. Measurement on the effect of RTS/CTS on a wireless link. Performance comparison of GSM and CDMA networks EFERENCES: Advanced Network Technologies Virtual Lab @ www.virtual-labs.ac.in/cse28/ www.winlab.rutgers.edu/zhibinwu/pdf/tr_ns802_11.pdf www.ittc.ku.edu/jpgs/courses/ / lecture-lab-intro2ns3- print.pdf

TTTT/CAAA4	SUB NAME L	T	P	C
YWC201	MULTICARRIER COMMUNICATION 3	1	0	4
UNIT I FUNDAMEN	TALS OF OFDM/OFDMA SYSTEMS			9
	nel modeling- Parameters of wireless channels, Categorization of	fading	, char	nels
	methods for channel fading mitigation-Time-selective fading, F			
	M systems- System architecture, Discrete-time model of an OFDM			
	rengths and drawbacks of OFDM. OFDM-based multiple access schen		, 1	
UNIT II				9
SYSTEM IM	PERFECTIONS			
downlink tran	uency synchronizations-Sensitivity to timing and frequency errors, Synsmission, Synchronizations for uplink transmissions.Peak-to-Avenitions, Statistical properties of PAPR, PAPR reduction techniques. Con techniques.	age Po	ower 1	Ratic
UNIT III	A			9
OFDM PERF				
	n Performance over AWGN Channels-Clipping Amplification, BER			
	Using Clipping Amplifiers, Signal Spectrum with Clipping Amplif			
	ersion, Phase Noise -Effects of phase noise, White Phase Noise Mod			
	I transmission over wideband channel-channel model, Effects of	Time	Dispe	rsive
UNIT IV	OFDM, system performance over dispersive channel.			9
MC CDMA				
System. Basic	MC-CDMA, CDMA- MC-CDMA, MC-DS-CDMA, MT- CDMA, M spreading sequences, MC-CDMA System Performance in Synchrono			
System. Basic Advanced pea				ent,
System. Basic Advanced pea UNIT V	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques.			
System. Basic Advanced pea UNIT V APPLICATIC Digital Broade	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	us Env	ironme Ferres	ent, 9 trial
System. Basic Advanced pea UNIT V APPLICATIC Digital Broadc Integrated Ser	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	us Env asting, ' , IEEF	ironme Ferres	9 trial
System. Basic Advanced pea UNIT V APPLICATIC Digital Broadc Integrated Ser	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	us Env asting, ' , IEEE AL	ironme Γerres E 802.1	ent, 9 trial
System. Basic Advanced pea UNIT V APPLICATIC Digital Broadc Integrated Ser IEEE 802.16a	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g LECTURE TUTORL 45 15	us Env asting, ' , IEEE AL	Ferrest 802.1	ent, 9 trial
System. Basic Advanced pea UNIT V APPLICATIC Digital Broadc Integrated Ser IEEE 802.16a REFERENCI	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g LECTURE TUTORL 45 15 ES	us Env asting, ' g , IEEE AL	ironme Ferress 802.1 TOT 60	ent, 9 trial 11h, AL
System. Basic Advanced pea UNIT V APPLICATIO Digital Broado Integrated Ser IEEE 802.16a REFERENCI 1. Man-O	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	us Envi asting, ' , IEEE AL	Ferrest 8 802.1 TOT 60 Broadb	ent, 9 trial 1h, AL and
System. Basic Advanced pea UNIT V APPLICATIO Digital Broado Integrated Ser IEEE 802.16a REFERENCI 1. Man-O Wirelo 2. Hara,	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	asting, ' , IEEF AL	Terrest E 802.1 TOTA 60 Broadb	ent, 9 trial 11h, AL and ress
System. Basic Advanced pea UNIT V APPLICATIO Digital Broad Integrated Ser IEEE 802.16a REFERENCI 1. Man-C Wirelo 2. Hara, Unive 3. OFDM	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	asting, ' asting, ' g, IEEE AL s For E ial Coll s Arted	Ferrest 802.1 TOT 60 Broadb lege Pi ch Ho	ent, 9 trial 11h, AL and ress suse
System. Basic Advanced pea UNIT V APPLICATIO Digital Broado Integrated Ser IEEE 802.16a REFERENCI 1. Man-G Wirelo 2. Hara, Unive 3. OFDM Atriur	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	asting, ' , IEEE AL s For E ial Coll s Arteo & Sons	Terrest 802.1 TOT 60 Broadb lege Pr ch Ho Ltd, 7	ent, 9 trial 11h, AL and ress use The
System. Basic Advanced pea UNIT V APPLICATIO Digital Broado Integrated Ser IEEE 802.16a REFERENCI 1. Man-O Wirelo 2. Hara, Unive 3. OFDM Atriur 4. Liu, H	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	asting, ' , IEEE AL s For E ial Coll s Arteo & Sons	Terrest 802.1 TOT 60 Broadb lege Pr ch Ho Ltd, 7	ent, 9 trial 11h, AL and ress use The
System. Basic Advanced pea UNIT V APPLICATIO Digital Broado Integrated Ser IEEE 802.16a REFERENCI 1. Man-O Wirelo 2. Hara, Unive 3. OFDM Atriur 4. Liu, H Wiley 5. Lie Li	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	asting, ' asting, ' g, IEEE AL S For E ial Coll s Artea & Sons ion 200	Terrest 802.1 TOT 60 Broadb lege Pr ch Ho Ltd, 7	ent, 9 trial 11h, AL and ress use The
System. Basic Advanced pea UNIT V APPLICATIO Digital Broad Integrated Ser IEEE 802.16a REFERENCI 1. Man-O Wirelo 2. Hara, Unive 3. OFDM Atriur 4. Liu, H Wiley 5. Lie Li 6. Andre 7. James	spreading sequences, MC-CDMA System Performance in Synchrono k factor reduction techniques. ONS OF OFDM AND MC-CDMA casting- Digital Audio Broadcasting, Terrestrial Digital Video Broadca vices Digital Broadcasting, GHz-Band Wireless LANs- IEEE 802.11g	asting, ' asting, ' , IEEE AL S For E ial Coll s Arteo & Sons ion 200 2009	Ferress 802.1 TOT 60 Broadb lege Prich Ho Ltd, 7 5 by Jo	ent, 9 trial 11h, AL and ress use The ohn

YWC20 UNIT I)DE	SUB NAME	L	Т	P	C
UNIT I	02	MICROWAVE PASSIVE AND ACTIVE SYSTEMS	3	0	1	4
						9
MICR	OWAVE	CIRCUITS:				
line, Str Single	ip and cop and doub	iprocal networks, Lossless networks, Planar transmission lanar lines. Impedance matching: Matching with lumped el le stub using Smith chart solutions, Quarter wave trans triangular taper.	ements	s, Stu	b ma	tching
UNIT –	·II					9
		UIT DESIGN wave guide based Directional coupler, E & circulator, slotted line section, Frequency meter, Attenuator,	-		•	
ÚNIT I				9		
MICD		NTEGRATED PASSIVE CIRCUITS				
		pler Wilkinson power divider 90 degree Hybrid Coupler,18	0 dear		unla	r Filta
		· · · · ·	-		-	
-		tructures, Insertion loss method, maximally flat low pass fil	ter, ste	epped	mp	edanc
	s filter, filt					
iow pas	,	er transformation, filter implementation.				
Iow pass		er transformation, inter implementation.			9	
UNIT – MICR(-IV DWAVE	SYSTEMS RF transceiver, Microwave standards, S ystem, Radar systems	atellite	e lin	-	Cellula
UNIT – MICR(Commu	IV DWAVE nication sy	SYSTEMS RF transceiver, Microwave standards, S	atellite		-	Cellula
UNIT – MICR(Commu UNIT-V	IV DWAVE nication sy	SYSTEMS RF transceiver, Microwave standards, S	atellite		k, (Cellula
UNIT – MICRO Commu UNIT-V ACTIV Characo Amplifi range ar	IV DWAVE nication sy V E MICR(teristics of er design; nd noise so	SYSTEMS RF transceiver, Microwave standards, S ystem, Radar systems	behav	vior a	k, () 9	nodels
UNIT – MICRO Commu UNIT-V ACTIV Characo Amplifi range ar	IV DWAVE nication sy V E MICR(teristics of er design; nd noise so	 SYSTEMS RF transceiver, Microwave standards, S ystem, Radar systems OWAVE CIRCUIT DESIGN f microwave diodes and transistors. Linear and nonlinear gain and stability, design for noise figure- Noise in micro purces, equivalent noise temperature, 	behav wave o	yior a	k, (9 und r ts; d	nodels
UNIT – MICRO Commu UNIT-V ACTIV Characo Amplifi range ar	IV DWAVE nication sy V E MICR(teristics of er design; nd noise so	SYSTEMS RF transceiver, Microwave standards, S ystem, Radar systems OWAVE CIRCUIT DESIGN f microwave diodes and transistors. Linear and nonlinear gain and stability, design for noise figure- Noise in micro purces, equivalent noise temperature, e considerations	behav wave o	yior a	k, (9 und r ts; d	nodels ynami)TAL
UNIT – MICRO Commu UNIT-V ACTIV Charace Amplifi range ar system	IV DWAVE nication sy V E MICR(teristics of er design; nd noise so	SYSTEMS RF transceiver, Microwave standards, S ystem, Radar systems OWAVE CIRCUIT DESIGN f microwave diodes and transistors. Linear and nonlinear gain and stability, design for noise figure- Noise in micro purces, equivalent noise temperature, te considerations LECTURE PRACE	behav wave o	yior a	\mathbf{k} , 0 and 1 ts; \mathbf{d}	nodels ynami)TAL
UNIT – MICRO Commu UNIT-V ACTIV Characc Amplifi range ar system	IV DWAVE nication sy E MICR(teristics of er design; nd noise so noise figur	SYSTEMS RF transceiver, Microwave standards, S ystem, Radar systems OWAVE CIRCUIT DESIGN f microwave diodes and transistors. Linear and nonlinear gain and stability, design for noise figure- Noise in micro purces, equivalent noise temperature, te considerations LECTURE PRACE	behav wave o	yior a	\mathbf{k} , 0 and 1 ts; \mathbf{d}	nodels ynami)TAL
UNIT – MICRO Commu UNIT-V ACTIV Charact Amplifi range ar system to system to Referent 1. 2.	IV DWAVE nication sy V E MICRO teristics of er design; nd noise so noise figur nce Books David M. David M.	SYSTEMS RF transceiver, Microwave standards, S ystem, Radar systems OWAVE CIRCUIT DESIGN f microwave diodes and transistors. Linear and nonlinear gain and stability, design for noise figure- Noise in micro purces, equivalent noise temperature, e considerations LECTURE PRAC 45 30	behav wave o CTICA	vior a circui	k, () 9 101 11 15; d 102 103 103 103 103 103 103 103 103 103 103	nodels ynami DTAL

SUBCODE	SUB NAME	С	Т	Р	C
YWC204	ADVANCED RADIATION SYSTEMS	3	0	0	3
UNIT I					9
Radiation from	CPTS OF RADIATION surface current and current line current distribution, Bas nism-Current distribution of an Antennas, Impedance co sformer.	1		ers,	
UNIT II					9
Field equivalenc ground plane, Ap	ROM APERTURES e principle, Rectangular and circular apertures, Uniform perture fields of Horn antenna-Babinets principle, Geom as, and Design considerations - Slot antennas.				

				9
Types of linear	OF ARRAY ANTENNAS arrays, current distribution in nuous aperture sources, Anten		rs, Optimization of	Array
UNIT IV				9
Radiation mec	IP ANTENNAS nanisms, Feeding structure, Repatch antenna, Microstrip dipo		tch, Ring antenna.	Input
UNIT V				9
measurement a	Bi-conical, Log spiral ridge Gu nd instrumentation ,Amplitud n measurement, Antenna rang	e and Phase measurement,		mpedance
		45	0	45
York,19	69 g Gu, "RF System Design	r.F.,"Antenna Theory"Pa		
York,19 3. Qizheng Springe 4. Michael Publishi 5. Ken Ku Packagi 6. R. Jacol	g Gu, "RF System Design	of Transceivers for Wa and RF Design: A Syst an S. Cahill, "RF and Mi esign, Layout, and Simu	ireless Commun ems Approach", crowave Microel	ications", SciTech lectronics
 York, 19 Qizheng Springe Michael Publishi Ken Ku Packagi R. Jacol Press Se 	g Gu, "RF System Design r, 2010. B. Steer, "Microwave a ng, 2009. ang, Franklin Kim and Sea ng", Springer, 2009. Baker, "CMOS Circuit D eries on Microelectronic Sy	of Transceivers for Wa and RF Design: A Syst an S. Cahill, "RF and Mi esign, Layout, and Simu	ireless Commun ems Approach", crowave Microel lation", 3rd Editi	ications", SciTech lectronics on (IEEE
York,19 3. Qizheng Springe 4. Michael Publishi 5. Ken Ku Packagi 6. R. Jacol	g Gu, "RF System Design r, 2010. B. Steer, "Microwave a ng, 2009. ang, Franklin Kim and Sea ng", Springer, 2009. D Baker, "CMOS Circuit D	of Transceivers for Wa and RF Design: A Syst an S. Cahill, "RF and Mi esign, Layout, and Simu ystems), 201	ireless Commun ems Approach", crowave Microel	ications", SciTech lectronics

REFERENCES:

ELECTIVES LIST

YWC104A RADAR COMMUNICATION 3 0 0 UNIT I INTRODUCTION TO RADAR Basic Radar – The simple form of the Radar Equation- Radar Block Diagram- Radar Frequend -Applications of Radar – The Origins of Radar, The Radar Equation. Introduction- Detection Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Function Probabilities of Detection and False Alarm - Integration of Radar Pulses- Radar Cross Section Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequen Antenna Parameters-System losses – Other Radar Equation Considerations. UNIT II 9 MTI AND PULSE DOPPLER RADAR 9 Introduction to Doppler and MTI Radar- Delay –Line Cancelers- Staggered Pulse Repetit Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detect Limitations to MTI Performance - MTI from a Moving Platform (AMIT) - Pulse Doppler Rad Other Doppler Radar Topics - Tracking with Radar –Monopulse Tracking - Conical Scan Sequential Lobing - Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking Narveillance Radars (ADT). UNIT III TRANSMITTER AND RECEIVERS Radar Transmitters. Introduction –Linear Beam Power Tubes - Solid State RF Power Source Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter. Adar Receiver : The Radar Receiver - Receiver noise Figure - Superheterod? Receiver -Duplexers and Receiver Protectors- Radar Displays. Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antent Loop Input Circuits - An Aural Null Direction Finder - Range and Accuracy o	SUBCODE	SUB NAME			L	Т	Р	С
 INTRODUCTION TO RADAR Basic Radar – The simple form of the Radar Equation- Radar Block Diagram- Radar Frequenc-Applications of Radar – The Origins of Radar, The Radar Equation. Introduction- Detection Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Functic Probabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequen Antenna Parameters-System losses – Other Radar Equation Considerations. UNIT II 9 MTI AND PULSE DOPPLER RADAR Introduction to Doppler and MTI Radar- Delay –Line Cancelers- Staggered Pulse Repetit Frequencies –Doppler Filter Banks – Digital MTI Processing – Moving Target Detect Limitations to MTI Performance – MTI from a Moving Platform (AMIT) - Pulse Doppler Rad Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking – Conical Scan Sequential Lobing- Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking Range - Other Tracking Radar Topics -Comparison of Trackers -Automatic Tracking Surveillance Radars (ADT). UNIT III TRANSMITTER AND RECEIVERS Radar Transmitters- Introduction –Linear Beam Power Tubes - Solid State RF Power Source Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter. Radar Receiver Protectors- Radar Displays. UNIT IV DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation-Radio Direction Finding - The Loop Antent Loop Input Circuits - An Aural Null Direction Finder - Range and Accuracy of Direction Find Radio Ranges - The L/MF Four course Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measu		RADAR COMMUNICA	TION		3	0	0	3
Basic Radar –The simple form of the Radar Equation- Radar Block Diagram- Radar Frequenci -Applications of Radar – The Origins of Radar, The Radar Equation. Introduction- Detection Signals in Noise- Receiver Noise and the Signal-to-Noise Ratio-Probability Density Function Frobabilities of Detection and False Alarm- Integration of Radar Pulses- Radar Cross Section Targets- Radar cross Section Fluctuations- Transmitter Power-Pulse Repetition Frequen Antenna Parameters-System losses – Other Radar Equation Considerations. UNIT II 9 MTI AND PULSE DOPPLER RADAR 9 Introduction to Doppler and MTI Radar- Delay –Line Cancelers- Staggered Pulse Repeti Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detect Limitations to MTI Performance - MTI from a Moving Platform (AMIT) - Pulse Doppler Rad Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking – Conical Scan Sequential Lobing- Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking Range - Other Tracking Radar Topics -Comparison of Trackers -Automatic Tracking Surveillance Radars (ADT). UNIT III TRANSMITTER AND RECEIVERS Radar Transmitters- Introduction –Linear Beam Power Tubes - Solid State RF Power Source Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter.Radar Receivers - The Radar Receiver - Receiver noise Figure - Superheterody Receiver -Duplexers and Receiver Protectors- Radar Displays. UNIT IV DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antenn Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Find - Adocck Direction Finders - Direction								9
UNIT II 9 MTI AND PULSE DOPPLER RADAR Introduction to Doppler and MTI Radar- Delay –Line Cancelers- Staggered Pulse Repetit Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detect Limitations to MTI Performance - MTI from a Moving Platform (AMIT) - Pulse Doppler Rad Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking – Conical Scan Sequential Lobing- Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking Range - Other Tracking Radar Topics -Comparison of Trackers -Automatic Tracking Surveillance Radars (ADT). UNIT III TRANSMITTER AND RECEIVERS Radar Transmitters- Introduction –Linear Beam Power Tubes - Solid State RF Power Sources Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter.Radar Receivers - The Radar Receiver - Receiver noise Figure - Superheterody Receiver -Duplexers and Receiver Protectors- Radar Displays. UNIT IV DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antenn Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finder - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direct Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Find Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA. Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control	Basic Radar –The s –Applications of Ra Signals in Noise- R Probabilities of Det Targets- Radar cro	imple form of the Radar H dar – The Origins of Rada Receiver Noise and the Sig fection and False Alarm- ss Section Fluctuations-	ar, The Radar Equa gnal-to-Noise Ration Integration of Rad Transmitter Power	ation. Introd o-Probability ar Pulses- Ra c-Pulse Rep	uction Den adar C petitio	n- Dete sity F Cross S	ection unction ection	n of ons- n of
Introduction to Doppler and MTI Radar- Delay –Line Cancelers- Staggered Pulse Repeti Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detect Limitations to MTI Performance - MTI from a Moving Platform (AMIT) - Pulse Doppler Rad Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking – Conical Scan Sequential Lobing- Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking Range - Other Tracking Radar Topics -Comparison of Trackers -Automatic Tracking Surveillance Radars (ADT). UNIT III TRANSMITTER AND RECEIVERS Radar Transmitters- Introduction –Linear Beam Power Tubes - Solid State RF Power Source Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter.Radar Receivers - The Radar Receiver - Receiver noise Figure - Superheterody Receiver -Duplexers and Receiver Protectors- Radar Displays. UNIT IV DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antent Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Find - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direct Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Find Radio Ranges - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control			*				9	
Introduction to Doppler and MTI Radar- Delay –Line Cancelers- Staggered Pulse Repeti Frequencies –Doppler Filter Banks - Digital MTI Processing - Moving Target Detect Limitations to MTI Performance - MTI from a Moving Platform (AMIT) - Pulse Doppler Rad Other Doppler Radar Topics- Tracking with Radar –Monopulse Tracking – Conical Scan Sequential Lobing- Limitations to Tracking Accuracy - Low-Angle Tracking - Tracking Range - Other Tracking Radar Topics -Comparison of Trackers -Automatic Tracking Surveillance Radars (ADT). UNIT III TRANSMITTER AND RECEIVERS Radar Transmitters- Introduction –Linear Beam Power Tubes - Solid State RF Power Source Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter.Radar Receivers - The Radar Receiver - Receiver noise Figure - Superheterody Receiver -Duplexers and Receiver Protectors- Radar Displays. UNIT IV DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antent Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Find - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direct Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Find Radio Ranges - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control	MTI AND PULSE	DOPPLER RADAR						
 TRANSMITTER AND RECEIVERS Radar Transmitters- Introduction –Linear Beam Power Tubes - Solid State RF Power Sources Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter.Radar Receivers - The Radar Receiver - Receiver noise Figure - Superheterody Receiver -Duplexers and Receiver Protectors- Radar Displays. UNIT IV DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antenn Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finder Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direct Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Find Radio Ranges - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control 	Frequencies –Dopp Limitations to MTI Other Doppler Rada Sequential Lobing- Range - Other Tr Surveillance Radars	eler Filter Banks - Digit Performance - MTI from a ar Topics- Tracking with Limitations to Tracking acking Radar Topics -C	tal MTI Processi a Moving Platform Radar –Monopuls g Accuracy - Lo	ng - Movir (AMIT) - P e Tracking - w-Angle Tra	ng Ta Pulse I – Cor Icking	arget I Dopple nical S g - Tra	Detect er Rac Scan ackin	or - lar – and g in with
 Radar Transmitters- Introduction –Linear Beam Power Tubes - Solid State RF Power Sources Magnetron - Crossed Field Amplifiers - Other RF Power Sources - Other aspects of Ra Transmitter.Radar Receivers - The Radar Receiver - Receiver noise Figure - Superheterody Receiver -Duplexers and Receiver Protectors- Radar Displays. UNIT IV DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antenn Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finder - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direct Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Find Radio Ranges - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control 	UNIT III							9
 DIRECTION FINDING AND RANGE MEASUREMENTS Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antenn Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finder - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direct Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Find Radio Ranges - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control 	Radar Transmitters- Magnetron - Crosse Transmitter.Radar F Receiver -Duplexers	Introduction –Linear Bea ed Field Amplifiers - Oth Receivers - The Radar Re	her RF Power So ceiver - Receiver	urces - Othe	er asj	pects of	of Ra	dar
 Introduction - Four methods of Navigation.Radio Direction Finding - The Loop Antenn Loop Input Circuits - An Aural Null Direction Finder - The Goniometer - Errors in Direction Finder - Adcock Direction Finders - Direction Finding at Very High Frequencies - Automatic Direct Finders - The Commutated Aerial Direction Finder - Range and Accuracy of Direction Find Radio Ranges - The LF/MF Four course Radio Range - VHF Omni Directional Range(VOR) - V Receiving Equipment - Range and Accuracy of VOR - Recent Developments. UNIT V DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control 								,
DISTANCE MEASURING, LANDING SYSTEMS AND DOPPLER NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control	Introduction - Four Loop Input Circuits - Adcock Direction Finders - The Com Radio Ranges - The Receiving Equipment	r methods of Navigation - An Aural Null Direction F Finders - Direction Findin mutated Aerial Direction LF/MF Four course Radio	Radio Direction Finder - The Gonion og at Very High Fr Finder - Range a Range - VHF Omn	neter - Errors equencies - nd Accuracy i Directional	s in Di Autor of Di	irection natic	n Find Direc 1 Find	ling tion ers, OR
NAVIGATION DME and TACAN - Distance Measuring Equipment - Operation of DME - TACAN -TACA Equipment Aids to Approach and Landing - Instrument Landing System - Ground Control	UNITV							9
Approach System - Microwave Landing System(MLS) Doppler Navigation - The Doppler Effect - Beam Configurations -Doppler Frequen Equations - Track Stabilization - Doppler Spectrum - Components of the Doppler Navigation Syste - Doppler range Equation - Accuracy of Doppler Navigation Systems. Inertial Navigation - Princip of Operation - Navigation Over the Earth - Components of an Inertial Navigation System - Ea Coordinate Mechanization - Strapped-Down Systems -Accuracy of Inertial Navigation System Satellite Navigation System - The Transit System - Navstar Global Positioning System (GPS)	NAVIGATION DME and TACAN Equipment Aids to Approach System - I Doppler Navigation Equations - Track St - Doppler range Equa of Operation - Navig Coordinate Mechan	- Distance Measuring Equ Approach and Landing - Microwave Landing System n - The Doppler Effect abilization - Doppler Spectration - Accuracy of Doppler gation Over the Earth - Con ization - Strapped-Down	uipment - Operatio Instrument Lands n(MLS) et - Beam Conf rum - Components r Navigation System mponents of an Ine Systems -Accurac em - Navstar Globa	on of DME ing System igurations - of the Dopple ns. Inertial Naviga ertial Naviga y of Inertial l Positioning	- Gro Dopp er Nav avigat tion S Navig Syste	und Co ler Fr vigation tion - P System gation em (GP	ontrol reque n Syst Princip 1 - Ea Syste PS)	lled ncy tem ples arth
LECTURE TUTORIAL TOTAL					L		AL	
45 0 45			45	0		45		

REFERENCES

- Merrill I. Skolnik ," Introduction to Radar Systems", Tata McGraw-Hill (3rd Edition) 2003
 Peyton Z. Peebles:, "Radar Principles", Johnwiley, 2004
 J.C Toomay, " Principles of Radar", 2nd Edition –PHI, 2004

SUBCODE	SUB NAME	L	Τ	P	C
YWC104B	MOBILE SATELLITE COMMUNICATION	3	0	0	3
UNIT I					9
Conste Orbital Mech orbital perturb	TON TO SATELLITE COMMUNICATION: Satellite Orb llations – anics – Equation of orbit – Orbital Elements – Look an ation – Satellite coverage – Space environment – Eclipse – S ility – sub satellite point - launching procedures and Launch V	ngle Sun 7	deteri Trans	minati	
UNIT II	inty – sub satellite point - lautening procedures and Lauten v				9
RADIO LINK and frequency	AND SATELLITE ACCESS: Spectrum issues – Propaga considerations – Radio link analysis – Modulation – coding comparison of multiple access schemes.				
UNIT III					9
Environmental	nnologies – Launching Satellite constellation- Gateways – Mo issues.	bile '	Term	inals -	_
UNIT IV					9
Routes – Regu considerations UNIT V SATELLITE	CHITECTURE: System planning – Service Distribution latory issues – Traffic Forecast – Air interface – system develop and network management – Licensing issues. SYSTEM & SERVICES: Representative MSS system –	opmer Disti	nt – n ress	etwor and S	k 9 Safety
Routes – Regu considerations UNIT V SATELLITE Systems- navig Small Aperture	latory issues – Traffic Forecast – Air interface –system develop and network management – Licensing issues.	opmer Distr adcas	nt – n ress t syst	etwor and S tem –	k 9 Safety Very
Routes – Regu considerations UNIT V SATELLITE Systems- navig Small Aperture	 latory issues – Traffic Forecast – Air interface –system develop and network management – Licensing issues. SYSTEM & SERVICES: Representative MSS system – ation systems – Direct Satellite broadcast – Direct TV Broa e Terminal systems- Terrestrial Cellular system – Future 	Distr Distr adcas Tren	nt – n ress t syst ids –	etwor and S tem –	k afety Very Iband
Routes – Regu considerations UNIT V SATELLITE Systems- navig Small Aperture	latory issues – Traffic Forecast – Air interface –system develop and network management – Licensing issues. SYSTEM & SERVICES: Representative MSS system – ation systems – Direct Satellite broadcast – Direct TV Broad e Terminal systems- Terrestrial Cellular system – Future l over Satellite – Role of Satellite in Feature Networks. LECTURE TUTC 45	Distr Distr adcas Tren	nt – n ress t syst nds –	and S tem – Broad	k afety Very Iband
Routes – Regu considerations UNIT V SATELLITE Systems- navig Small Aperture systems – ATM REFERENCES 1. M.R Edu 2. T.Pr 3. W.L Hal 4. T.Ha 5. Ger Sys 6. Anil	latory issues – Traffic Forecast – Air interface –system develop and network management – Licensing issues. SYSTEM & SERVICES: Representative MSS system – ation systems – Direct Satellite broadcast – Direct TV Broad e Terminal systems- Terrestrial Cellular system – Future l over Satellite – Role of Satellite in Feature Networks. LECTURE TUTC 45	Distr adcas Tren ORIA 0 nds", 1 1. nginee cGrav	nt – n ress t syst nds – L Pears ering' v Hill Syster	etwor and S tem – Broad TOT 45 on ', Prer l, 1998 ns:	k Safety Very Iband AL

	CODE	SUB NAME					L	Т	P	С
	C104C	ADVANCED	DIGITAL S	GIGNAL	PROCESSI	NG	3	1	0	4
UNI	ГΙ						. <u>.</u>			10
DIS	SCRETE RA	NDOM SIGNA	LPROCESS	SING						
Dis	screte Randor	n Processes-En	semble aver	ages,stati	onary proce	esses,Auto	correl	ation	and	Auto
		ces. Parseval's								
		ctral Factorizati					ltering	of Wl	nite N	loise.
Par	ameter estima	tion: Bias and c	onsistencyN	Iultirate s	ignal Proces	sing				
UNI	ГІІ									8
SP	ECTRUM ES	STIMATION								
Estin	nation of spec	ctra from finite	duration sign	nals, Noi	n-Parametric	Methods	-Corre	elation	Met	hod ,
		nator, Performa								
		ram, Bartlett and								
		IA model based		nation. Pa	arameter Est	imation -	Yule-V	Valker	equa	tions,
	<u> </u>	rbin's algorithm								-
UNI										9
		AATIONAND				NT 7		-		
		Forward and bac								
	0	Least mean squ		terion -W	iener filter f	or filtering	g and p	oredicti	ion, F	IR
wien	her filter and v	Viener IIR filters	S.							
UNI	ΓΙ									9
AD	DAPTIVE FII	LTERS								
FIR	R adaptive filte	ers -adaptive filt	er based on st	eepest de	scent metho	d-Widrow	-Hoff	LMS a	ıdapti	ive
alge	orithm, Norma	alized LMS. Ad	aptive channe	el equalization	tion-Adapti	ve echo ca	ncella	tion-A	dapti	ve
		n- Adaptive recu	rsive filters (l	IIR), RLS	- adaptive fi	ilters-Exp	onentia	ally we	eighte	ed
RL	S-sliding wind				, adaptive n	Little Eng		2		
***	<u> </u>	10W KLS.							<u> </u>	-
UNI	ΓV									9
FII	Γ V LTER BANK	AND WAVEL			• 					9
FII Qua	Γ V LTER BANK adrature Mirro	AND WAVEL or Filter- Paraun	itary Filter Ba	anks- Bio	rthogonal Li	near Phase	e Filter	r banks		.1
FII Qua Uni	F V L TER BANK adrature Mirro iform M Chan	AND WAVEL or Filter- Paraun nel Filter banks	itary Filter Ba – Tree Struct	anks- Bio ured Filte	rthogonal Li er Banks- Wa	near Phase avelet Tra	e Filter nsform	r banks 1- Filte	r Bar	ıks
FII Qua Uni and	F V L TER BANK adrature Mirro iform M Chan l Wavelet – Pr	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav	itary Filter Ba – Tree Struct elets – Scalin	anks- Bio ured Filte	rthogonal Li er Banks- Wa	near Phase avelet Tra	e Filter nsform	r banks 1- Filte	r Bar	ıks
FII Qua Uni and	F V L TER BANK adrature Mirro iform M Chan l Wavelet – Pr	AND WAVEL or Filter- Paraun nel Filter banks	itary Filter Ba – Tree Struct elets – Scalin	anks- Bio ured Filte g Functic	rthogonal Li er Banks- Wa on – Construe	near Phase avelet Tra ction of w	e Filter nsform avelets	r banks 1- Filte 5- Exai	er Bar nples	nks s of
FII Qua Uni and	F V L TER BANK adrature Mirro iform M Chan l Wavelet – Pr	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav	itary Filter Ba – Tree Struct elets – Scalin	anks- Bio ured Filte g Functio	rthogonal Li er Banks- Wa on – Construc LECTURE	near Phase avelet Tra ction of w	e Filter nsform avelets	r banks 1- Filte s- Exar 2 1	er Bar mples T OT A	nks s of
FII Qua Uni and Wa	F V L TER BANK adrature Mirro iform M Chan I Wavelet – Pr avelet Systems	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications o	itary Filter Ba – Tree Struct elets – Scalin	anks- Bio ured Filte g Functio	rthogonal Li er Banks- Wa on – Construe	near Phase avelet Tra ction of w	e Filter nsform avelets	r banks 1- Filte s- Exar 2 1	er Bar nples	nks s of
FII Qua Uni and Wa	F V L TER BANK adrature Mirro iform M Chan l Wavelet – Pr	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications o	itary Filter Ba – Tree Struct elets – Scalin	anks- Bio ured Filte g Functio	rthogonal Li er Banks- Wa on – Construc LECTURE	near Phase avelet Tra ction of w	e Filter nsform avelets	r banks 1- Filte s- Exar 2 1	er Bar mples T OT A	nks s of
FII Qua Uni and Wa RE	F V L TER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications c	itary Filter Ba – Tree Struct elets – Scalin of Wavelets	anks- Bio ured Filte g Functio	rthogonal Li er Banks- Wa on – Construc LECTURE 45	near Phase avelet Tra ction of w TUT(15	e Filten nsform avelets DRIAI	r banks a- Filte s- Exar 2 1 6	er Bar mples COTA	nks s of
FII Qua Uni and Wa RE	F V L TER BANK adrature Mirro iform M Chan I Wavelet – Pr avelet Systems CFERENCES John G.Proak	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : cis, Dimitris G.M	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig	anks- Bio ured Filte g Functio gital Sign	rthogonal Li er Banks- Wa on – Construc LECTURE 45 al Processin	near Phase avelet Tra ction of w TUT(15 g Pearson	e Filter nsform avelets DRIAI Educa	r banks n- Filte s- Exar 2 1 6 ution, 2	er Bar nples COTA 0	nks s of AL
FII Qua Uni and Wa RE 1. 2.	F V L TER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : cis, Dimitris G.M cis et.al., 'Algorit	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis	anks- Bio ured Filte g Functio gital Sign stical Sign	rthogonal Li er Banks- Wa on – Construc LECTURE 45 al Processin nal Processin	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearson	e Filten nsform avelets DRIAI Educa on Edu	r banks n- Filte s- Exar 2 1 6 ution, 2 ucation	er Bar nples COTA 0	nks s of AL
FII Qua Uni and Wa RE	F V LTER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak Dimitris G.M	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M cis et.al., 'Algorit Ianolakis et.al., '	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis	anks- Bio ured Filte g Functio gital Sign stical Sign	rthogonal Li er Banks- Wa on – Construc LECTURE 45 al Processin nal Processin	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearson	e Filten nsform avelets DRIAI Educa on Edu	r banks n- Filte s- Exar 2 1 6 ution, 2 ucation	er Bar nples COTA 0	nks s of AL
FII Qua Uni and Wa RE 1. 2. 3.	F V LTER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak Dimitris G.M Newyork,200	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M cis et.al., 'Algorit Ianolakis et.al., ' 00.	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and	anks- Bio ured Filte g Functio gital Sign stical Sign l adaptive	rthogonal Li er Banks- Wa on – Construc LECTURE 45 al Processin nal Processin	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearson	e Filten nsform avelets DRIAI Educa on Edu	r banks n- Filte s- Exar 2 1 6 ution, 2 ucation	er Bar nples COTA 0	nks s of AL
FII Qua Uni and Wa RE 1. 2. 3. 4.	F V LTER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak Dimitris G.M. Newyork,200 N.J.Fliege, "1	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : kis, Dimitris G.M kis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P	anks- Bio ured Filte g Functio gital Sign stical Sign d adaptive PHI, 1995	rthogonal Li er Banks- Wa on – Construc LECTURE 45 al Processin nal Processin e signal Proc	near Phase avelet Tra ction of w TUTC 15 g Pearson ng', Pearso essing', N	e Filten nsform avelets DRIAI Educa on Edu lcGrav	r banks n- Filte s- Exan 2 1 6 ution, 2 ucation v Hill,	er Bar mples OTA 0 2009. 1, 200	nks s of AL 2.
FII Qua Uni and Wa RE 1. 2. 3. 4.	F V LTER BANK adrature Mirro iform M Chan I Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak Dimitris G.M. Newyork,200 N.J.Fliege, "I C.Sidney But	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M. tis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P Gopinath and	anks- Bio ured Filte g Functio gital Sign stical Sig d adaptive PHI, 1995 l Haitao C	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin e signal Proc Suo," Introdu	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearson essing', N action to V	e Filten nsform avelets DRIAI Educa on Edu lcGrav	r banks n- Filte s- Exan 2 1 6 ution, 2 ucation v Hill,	er Bar mples OTA 0 2009. 1, 200	nks s of AL 2.
FII Qua Uni and Wa RE 1. 2. 3. 4. 5.	F V LTER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES John G.Proal John G.Proal Dimitris G.M. Newyork,200 N.J.Fliege, "I C.Sidney Bur Transforms –	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M tis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statistical and Processing'P Gopinath and ntice Hall Inte	anks- Bio ured Filte g Functio g Functio g Function gital Sign stical Sign adaptive PHI, 1995 l Haitao C ernational	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin e signal Proc Suo," Introdu , editions, 19	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearson essing', N nction to V 998.	e Filten nsform avelets DRIAI Educa on Edu lcGrav	r banks n- Filte s- Exan 2 1 6 ution, 2 ucation v Hill,	er Bar mples OTA 0 2009. 1, 200	nks s of AL 2.
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6.	F V LTER BANK adrature Mirro iform M Chan I Wavelet – Pr welet Systems CFERENCES John G.Proal John G.Proal Dimitris G.M Newyork,200 N.J.Fliege, "I C.Sidney Bur Transforms – Rabiner and	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M dis et.al., 'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Multi	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dia thms for Statistical and Processing'P Gopinath and ntice Hall Inte irate Signal Pa	anks- Bio ured Filte g Functio g Functio g function gital Sign stical Sign d adaptive PHI, 1995 l Haitao C ernational rocessing	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin al Processin e signal Proc Suo," Introdu , editions, 19 " PHI, 1987.	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearso essing', M action to W 998.	e Filten nsform avelets DRIAI Educa on Edu IcGrav	r banks a- Filte s- Exan 2 1 6 ution, 2 ucation v Hill, ts and	er Bar mples COTA 0 2009. 1, 200 Wave	nks s of AL 2.
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6. 7.	F V LTER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak Dimitris G.M Newyork,200 N.J.Fliege, "1 C.Sidney Bur Transforms – Rabiner and G Raghuveer M	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : kis, Dimitris G.N kis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Mult I Rao, "Introduc	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P Gopinath and ntice Hall Inte irate Signal Pr tion to Wavel	anks- Bio ured Filte g Functio g Functio gital Sign stical Sign d adaptive PHI, 1995 Haitao C ernational rocessing let Transf	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin e signal Proc Suo," Introdu , editions, 19 " PHI, 1987 form", New 4	near Phase avelet Tra ction of w TUTC 15 g Pearson ng', Pearso essing', N action to V 098. Age Intern	e Filten nsform avelets DRIAI Educa on Edu IcGrav Vavele	r banks 1- Filte s- Exan 2 1 6 ution, 2 ucation v Hill, ts and 1, 2000	er Bar mples TOTA 0 2009. , 200 Wave	nks s of AL 2. elet
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6.	F V LTER BANK adrature Mirro iform M Chan I Wavelet – Pr welet Systems CFERENCES John G.Proak John G.Proak Dimitris G.M. Newyork,200 N.J.Fliege, "I C.Sidney Bur Transforms – Rabiner and C Raghuveer M Monson H.H	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M tis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Multi I Rao, "Introduc ayes, Statistical	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P Gopinath and ntice Hall Inte irate Signal Pr tion to Wavel	anks- Bio ured Filte g Functio g Functio gital Sign stical Sign d adaptive PHI, 1995 Haitao C ernational rocessing let Transf	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin e signal Proc Suo," Introdu , editions, 19 " PHI, 1987 form", New 4	near Phase avelet Tra ction of w TUTC 15 g Pearson ng', Pearso essing', N action to V 098. Age Intern	e Filten nsform avelets DRIAI Educa on Edu IcGrav Vavele	r banks 1- Filte s- Exan 2 1 6 ution, 2 ucation v Hill, ts and 1, 2000	er Bar mples TOTA 0 2009. , 200 Wave	nks s of AL 2. elet
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6. 7. 8.	F V LTER BANK adrature Mirro iform M Chan I Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak John G.Proak Dimitris G.M Newyork,200 N.J.Fliege, "I C.Sidney But Transforms – Rabiner and G Raghuveer M Monson H.H Inc.,Singap	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M. tis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Mult I Rao, "Introduc ayes, Statistical pore, 2002.	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P Gopinath and ntice Hall Inte irate Signal Pr tion to Wavel Digital Signal	anks- Bio ured Filte g Functio g Functio g Function gital Sign stical Sign adaptive PHI, 1995 l Haitao C ernational rocessing let Transf l Process	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin e signal Proc Suo," Introdu , editions, 19 " PHI, 1987. Form", New A ing and Mod	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearson essing', N netion to V 998. Age Intern leling, Joh	e Filten nsform avelets DRIAI Educa on Edu IcGrav Vavele ationa n Wile	r banks a- Filte s- Exan 2 1 6 ttion, 2 acation v Hill, ts and 1, 2000 ey and	er Bar mples COTA 0 2009. 1, 200 Wave). Sons	nks s of AL 2. elet
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6. 7. 8.	F V LTER BANK adrature Mirro iform M Chan I Wavelet – Pr welet Systems CFERENCES John G.Proal John G.Proal Dimitris G.M Newyork,200 N.J.Fliege, "I C.Sidney Bur Transforms – Rabiner and C Raghuveer M Monson H.H Inc.,Singap Rafael C. Go	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M dis et.al., 'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Multi I Rao, "Introduc ayes, Statistical pore, 2002. nzalez, Richard	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dia thms for Statistical and Processing'P Gopinath and tice Hall Inte irate Signal Pr tion to Wavel Digital Signa E.Woods, 'Di	anks- Bio ured Filte g Functio g Functio g function gital Sign stical Sign adaptive PHI, 1995 l Haitao C ernational rocessing let Transf l Process igital Ima	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin al Processin e signal Proc Guo," Introdu , editions, 19 " PHI, 1987 form", New A ing and Mod	near Phase avelet Tra ction of w TUT(15 g Pearson ng', Pearson essing', N netion to V 998. Age Intern leling, Joh	e Filten nsform avelets DRIAI Educa on Edu IcGrav Vavele ationa n Wile	r banks a- Filte s- Exan 2 1 6 ttion, 2 acation v Hill, ts and 1, 2000 ey and	er Bar mples COTA 0 2009. 1, 200 Wave). Sons	nks s of AL 2. elet
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6. 7. 8. 9.	F V LTER BANK adrature Mirro iform M Chan d Wavelet – Pr avelet Systems CFERENCES John G.Proak John G.Proak Dimitris G.M Newyork,200 N.J.Fliege, "I C.Sidney Bur Transforms – Rabiner and G Raghuveer M Monson H.H Inc.,Singap Rafael C. Go Second Editio	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M cis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Mult I Rao, "Introduc ayes, Statistical pore, 2002. nzalez, Richard on, 2004.(For V	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P Gopinath and ntice Hall Inte irate Signal Pr tion to Wavel Digital Signal E.Woods, 'D Vavelet Trans	anks- Bio ured Filte g Functio g Functio gital Sign stical Sign stical Sign adaptive PHI, 1995 Haitao C ernational rocessing let Transf l Process igital Ima form Top	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin al Processin signal Proc Guo," Introdu , editions, 19 " PHI, 1987. form", New A ing and Mod age Processin ic)	near Phase avelet Tra ction of w TUTC 15 g Pearson ng', Pearso essing', N action to V 998. Age Interra leling, Joh	e Filten nsform avelets DRIAI Educa on Educa IcGrav Vavele nationa n Wile	tion, 2 cation, 2 cation, 2 cation v Hill, ts and l, 2000 cy and cation	er Bar mples COTA 0 2009. , 200 Wave). Sons , Inc.	nks s of L 2. elet s,
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	T V LTER BANK adrature Mirro iform M Chan Wavelet – Pr welet Systems CFERENCES John G.Proak John G.Proak John G.Proak Dimitris G.M Newyork,200 N.J.Fliege, "I C.Sidney Bur Transforms – Rabiner and C Raghuveer M Monson H.H Inc.,Singap Rafael C. Go Second Editic Richard G. L	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M tis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Mult I Rao, "Introduc ayes, Statistical oore, 2002. nzalez, Richard on, 2004.(For V yons "Understan	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P Gopinath and ntice Hall Inte irate Signal Pr tion to Wavel Digital Signa E.Woods, 'D Wavelet Trans- nding Digital	anks- Bio ured Filte g Functio g Functio gital Sign stical Sign adaptive PHI, 1995 Haitao C ernational rocessing let Transf l Process igital Ima form Top Signal Pr	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin e signal Proc Suo," Introdu , editions, 19 " PHI, 1987 form", New A ing and Mod age Processin ic) ocessing", I	near Phase avelet Tra ction of w TUTC 15 g Pearson ng', Pearso essing', N nction to V 098. Age Intern leling, Joh ng', Pearso Prentice H	e Filten nsform avelets DRIAI Educa on Edu lcGrav Vavele aationa n Wile on Edu all, 3 rd	r banks a- Filte s- Exan 1 1 1 1 1 1 1 1	er Bar mples COTA 0 2009. , 200 Wave). Sons , Inc.	nks s of AL 2. elet S,
FII Qua Uni and Wa RE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	F V LTER BANK adrature Mirro iform M Chan I Wavelet – Pr welet Systems EFERENCES John G.Proak John G.Proak John G.Proak Dimitris G.M. Newyork,200 N.J.Fliege, "I C.Sidney But Transforms – Rabiner and C Raghuveer M Monson H.H Inc.,Singap Rafael C. Go Second Edition Richard G. L Alan V. Opp	AND WAVEL or Filter- Paraun nel Filter banks operties of Wav - Applications of : tis, Dimitris G.M cis et.al.,'Algorit Ianolakis et.al.,' 00. Multirate Signal rrus, Ramesh A - A Primer" Prer Crochier, "Mult I Rao, "Introduc ayes, Statistical pore, 2002. nzalez, Richard on, 2004.(For V	itary Filter Ba – Tree Struct elets – Scalin of Wavelets Manolakis, Dig thms for Statis Statistical and Processing'P Gopinath and ntice Hall Inte irate Signal Pr tion to Wavel Digital Signa E.Woods, 'D Vavelet Transin ding Digital ald W. Schafe	anks- Bio ured Filte g Functio g Functio gital Sign stical Sign adaptive PHI, 1995 Haitao C ernational rocessing let Transf l Process igital Ima form Top Signal Pr	rthogonal Li er Banks- Wa on – Construct LECTURE 45 al Processin nal Processin e signal Proc Suo," Introdu , editions, 19 " PHI, 1987 form", New A ing and Mod age Processin ic) ocessing", I	near Phase avelet Tra ction of w TUTC 15 g Pearson ng', Pearso essing', N nction to V 098. Age Intern leling, Joh ng', Pearso Prentice H	e Filten nsform avelets DRIAI Educa on Edu lcGrav Vavele aationa n Wile on Edu all, 3 rd	r banks a- Filte s- Exan 1 1 1 1 1 1 1 1	er Bar mples COTA 0 2009. , 200 Wave). Sons , Inc.	nks s of AL 2. elet s,

	SCODE	S	JB NA	ME						L	Т	P	С
YW	C104D	F	REE S	PACE	OPTICS	5				3	0	0	3
UNI													9
Fund Elect FSO	NDAMENTA damentals of tromagnetic - Fiber Acces uisition and T	of FS wave ess – (propag Overvie	gation w of F	in free s SO Optic	pace - cal Tra	- alternat	e bandwi	dth tec	hnolog	gies –		
UNI	TII												9
Th Sel	SO NETWOR ne Role of FS lecting transport stems – movin	FSO in smissi	on way	ve inte	gration of	of FSO	O in Op					n of	FSO
UNI	T III												9
The Lase	NG DISTAN FSO model er Satellite C	l – Aj	plicati	ons – S	System de	escrip						tion et	ffects
	ser Sources.			ons –	Character	ristics,	, Modula		iniques		Xaurai		0
UNI' PLA	T IV NE EM WA	AVES	IN ISC	OTROI	PIC MED	DIA O	PTICAI	L COMP	ONEN	rs fo	OR FS		9
UNI PLA Opti Int	T IV NE EM WA ical wavegui terconnecting vices.	AVES iides	IN ISC	OTROI	PIC MED ters, Cou	DIA O	PTICAI Amplifi	COMP lers, Swi	ONENT tches, A	FS FO Antenr	O R FS nas,	0	
UNI PLA Opti Int dev	T IV NE EM WA ical wavegui terconnecting vices. T V	AVES iides g Equ	IN ISC - Optio pment	DTROI cal Fil s, etc -	PIC MED ters, Cou – Optical	DIA O	PTICAI Amplifi	COMP lers, Swi	ONENT tches, A	FS FO Antenr	O R FS nas,	0	optic
UNI PLA Opti Int dev UNI	T IV NE EM WA ical wavegui terconnecting vices.	AVES iides g Equ GNAI iscrete	IN ISC - Optio pmenta PROO	D TROI cal Fil s, etc - C ESSI ns - N	PIC MED ters, Cou – Optical NG Voise and	DIA O iplers, integ	PTICAI Amplifi grated cir	COMP iers, Swi cuits – s ocesses –	ONENT tches, A emicono	FS FO Antenr Juctor	PR FS nas, integ wer	O rated	optic
UNI PLA Opti Int dev UNI	T IV NE EM WA ical wavegui terconnecting vices. T V PTICAL SIG nalog and Dis	AVES iides g Equ GNAI iscrete	IN ISC - Optio pmenta PROO	D TROI cal Fil s, etc - C ESSI ns - N	PIC MED ters, Cou – Optical NG Voise and	DIA O iplers, integ	PTICAI Amplifi grated cir hastic prostribution	COMP iers, Swi cuits – s ocesses –	ONENT tches, A emicono · Filters and trip	FS FO Antenr Juctor	PR FS nas, integ wer relatio	O rated	optic 9
UNI PLA Opti Int dev UNI OF An spect	T IV NE EM WA ical wavegui terconnecting vices. T V PTICAL SIG halog and Dis tra estimation	AVES iides g Equ GNAI iscrete n – A	IN ISC - Optio pmenta PROO	D TROI cal Fil s, etc - C ESSI ns - N	PIC MED ters, Cou – Optical NG Voise and	DIA O iplers, integ	PTICAI Amplifi grated cir hastic prostribution	COMP iers, Swi cuits – s ocesses – n function	ONENT tches, A emicono · Filters and trip	FS FO Antenr ductor	PR FS nas, integ wer relatio	O rated	optic 9
UNI PLA Opti Int dev UNI OF An spect	T IV NE EM WA ical wavegui terconnecting vices. T V PTICAL SIG nalog and Dis	AVES iides g Equ GNAI iscrete n – A	IN ISC - Optio pment pment	DTROI cal Fil s, etc - CESSI ns – N y func	PIC MED ters, Cou – Optical NG Voise and tion, Wig	DIA O plers, integ	PTICAI Amplifi grated cir hastic pr stribution LEC	COMP iers, Swi cuits – su ocesses – a function TURE 45	ONENT tches, A emicono Filters and trip	FS FO Antenr ductor ductor ductor CORIA 0	PR FS nas, integ wer relatio	O rated ons TOT	optic 9

COMMUNICATION SYSTEMS 9 UNIT I 9 VECTOR SPACES Vector Spaces, Subspaces, Linearly Independence and dependence, Dimension and Bases, Rank – Nullilty dimension theorem, Inner product spaces, Orthogonality and Gram-Schmidt orthogonalization process, Diagonalization 9 UNIT II 9 ALGEBRA 9 Sets-Relations and functions-Definitions; Groups-Definition and elementary properties- subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization– Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS 9 Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions.	SUBCODE	SUB NAME		L	Т	P	С
UNIT I 9 VECTOR SPACES Vector Spaces, Subspaces, Linearly Independence and dependence, Dimension and Bases, Rank – Nullitly dimension theorem, Inner product spaces, Orthogonality and Gram-Schmidt orthogonalization process, Diagonalization 9 UNIT II 9 ALGEBRA 9 Sets-Relations and functions-Definitions; Groups-Definition and elementary properties-subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization– Least squares method – Singular value decomposition . 9 UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS 9 Random variables - Probability function – Moment S – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. 9 STOCHASTIC PROCESSES 10 9 Introduction - Classification of stochastic process, Stationary process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 QUEUEING MODELS 9 Poisson Process - Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. 9 Interference Model – Steady State analysis – Self Serv	YWC105A			3	1	0	4
VECTOR SPACES Vector Spaces, Subspaces, Linearly Independence and dependence, Dimension and Bases, Rank – Nullifly dimension theorem, Inner product spaces, Orthogonality and Gram-Schmidt orthogonalization UNIT II 9 ALGEBRA Sets-Relations and functions-Definitions; Groups-Definition and elementary properties- subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization–Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction - Classification of stochastic process, Stationary process, (SSS and WSS) Stationary process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Natrorow- Band Process, Normal Process, Wiener-Levy Process, Proson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process - Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. INT TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanan Publishers, 2007. [mit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &V] 4. Michel K. Ochi, "Applied Pr		COMMUNICATION SYSTEM	[S				
Vector Spaces, Subspaces, Linearly Independence and dependence, Dimension and Bases, Rank – Nullifty dimension theorem, Inner product spaces, Orthogonality and Gram-Schmidt orthogonalization UNIT II 9 ALGEBRA Sets-Relations and functions-Definitions; Groups-Definition and elementary properties- subgroups-abelian groups-Lagranges theorem-properties; Field-Finite fields-elementary properties- subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization–Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction - Classification of stochastic process, Stationary process, (SSS and WSS) Stationary process, Ergodic Process, Miener-Levy Process, Markov Process, Counting Process, Narrow- Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. (LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanan Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice –							9
Nullilty dimension theorem, Inner product spaces, Orthogonality and Gram-Schmidt orthogonalization process, Diagonalization UNIT II 9 ALGEBRA Sets-Relations and functions-Definitions; Groups-Definition and elementary properties- subgroups-abelian groups-Lagranges theorem-properties; Field-Finite fields-elementary properties - subfields-tatements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization– Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process, Counting Process, Narrow- Band Process, Independent increment Process, Markov Process, Counting Process, Narrow- Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. <u>LECTURE TUTORIAL TOTAL</u> 60 <u>REFERENCES</u> 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &V] 4. Michel K. Ochi, "Applied Probability and Statistics							
process, Diagonalization UNIT II 9 ALGEBRA Sets-Relations and functions-Definitions; Groups-Definition and elementary properties- subgroups-abelian groups-Lagranges theorem-properties; Field-Finite fields-elementary properties- subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization– Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random Variables - Probability function – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction - Classification of stochastic process, Stationary process, Counting Process, Narrow- Band Process, Independent increment Process, Markov Process, Counting Process, Narrow- Band Process, Narnal Process, Wiener-Levy Process, Narkov Process, Counting Process, Narrow- Band Process, Narral Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. <u>LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III & VI] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons JISSN</u>							
UNIT II 9 ALGEBRA Sets-Relations and functions-Definitions; Groups-Definition and elementary properties-subfields-statements, properties. Field-Finite fields-elementary properties-subfields-statements, properties. Sets-Relations – The Cholesky decomposition – QR factorization – Least squares method – Singular value decomposition . 9 WINT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS 9 Random variables - Probability function – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNT IV 9 STOCHASTIC PROCESSES 9 Introduction - Classification of stochastic process, Narkov Process, Counting Process, Narrow-Band Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Nernet, Process, Vergenet, Egodic Process, Independent increment Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 QUEUELING MODELS 9 Poisson Process - Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. 10 Interferences 10 Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit	•		gonanty and Gra	m-Schmat of	rtnogo	nanza	tion
Sets-Relations and functions-Definitions; Groups-Definition and elementary properties- subgroups-abelian groups-Lagranges theorem-properties; Field-Finite fields-elementary properties- subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization– Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Dethi (2007).[unit II &/V] 4. Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons JISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New	UNIT II						9
Sets-Relations and functions-Definitions; Groups-Definition and elementary properties- subgroups-abelian groups-Lagranges theorem-properties; Field-Finite fields-elementary properties- subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization– Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ld., New Delhi (2007).[unit II & IV] 4. Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons JISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New	ALGEBRA						<u> </u>
subgroups-abelian groups-Lagranges theorem-properties; Field-Finite fields-elementary properties. subfields-statements, properties. Matrix Theory - Some important matrix factorizations – The Cholesky decomposition – QR factorization– Least squares method – Singular value decomposition . UNIT III 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS 9 Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distributions and Relationship between various Discrete-Type distributions 9 Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between various Discrete-Type distributions 9 STOCHASTIC PROCESSES 9 Introduction - Classification of stochastic process, Stationary process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 QUEUEING MODELS 9 REFERENCES 15 60 REFERENCES 15 60 REFERENCES 15 60 REFERENCES 1 9 3 References 1 1 4 10 15 60 8 2007. [unit I] 9 9 20 20 20 10 2 <t< td=""><td></td><th>nd functions-Definitions; Gro</th><th>ups-Definition</th><td>and eleme</td><td>ntary</td><th>prope</th><td>rties-</td></t<>		nd functions-Definitions; Gro	ups-Definition	and eleme	ntary	prope	rties-
factorizations The Cholesky decomposition QR factorization 9 Singular value decomposition . 9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS 9 Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distributions Normal, Doison Distributions and Relationship between various Discrete-Type distributions 9 Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. 9 STOCHASTIC PROCESSES 1 9 Introduction - Classification of stochastic process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 QUEUEING MODELS 9 Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. 9 REFERENCES 1 Gerwal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 45 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 9 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th editi	subgroups-abelian				•	· ·	
Singular value decomposition . 9 UNIT III UNIT III UNIT III UNIT III UNIT III UNIT III Standom VARIABLES AND THEIR DISTRIBUTIONS Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction - Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Narrow- Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. EECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New			•	-			
9 RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random Variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. 9 STOCHASTIC PROCESSES Introduction - Classification of stochastic process, Stationary process, Counting Process, Narrow-Band Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 Astistic for Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] Conduction, 2000. REFERENCES Non, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 15 Noon, T.K., Sterling, W.C., "Mathematical methods and alg			 QR factoriza 	tion– Least s	quare	s meth	nod –
RANDOM VARIABLES AND THEIR DISTRIBUTIONS Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction - Classification of stochastic process, Stationary process, Counting Process, Narrow-Band Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS 9 Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. 9 REFERENCES 15 60 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi , "Applied Probability and	Singular value deco	mposition.					
Random variables - Probability function – Moments – Moment Generation Function, Characteristic Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Narrow- Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. <u>LECTURE TUTORIAL TOTAL</u> 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New	UNIT III						9
Function, Binomial Distribution, Negative Binomial Distribution, Hypergeometric distribution, Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. VINIT IV 9 STOCHASTIC PROCESSES 9 Introduction- Classification of stochastic process, Stationary process, Counting Process, Narrow-Band Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 QUEUEING MODELS 9 Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. 9 REFERENCES 1 Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New							
Multinomial, Poisson Distributions and Relationship between various Discrete-Type distributions Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process, Counting Process, Narrow- Band Process, Independent increment Process, Markov Process, Counting Process, Narrow- Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007). [unit III &IV] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New							
Normal, Log - Normal, Multivariate Normal, Gamma, Exponential, Chi-square, Weibull, Rayleigh distributions. Relationship between continuous distributions. UNIT IV 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. <u>LECTURE</u> TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007). [unit III & IV] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New							ution,
distributions. Relationship between continuous distributions. 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process, Counting Process, Narrow-Band Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL Afs., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New							laigh
UNIT IV 9 STOCHASTIC PROCESSES Introduction- Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. 9 UNIT V 9 QUEUEING MODELS 9 Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. 9 REFERENCES 15 60 References 12 15 60 References 12 60 12 1 Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 9 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New				JIII-SQUAIC, V	veloui	1, Kay	leigh
Introduction- Classification of stochastic process, Stationary process (SSS and WSS) Stationary process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Narrow-Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New	UNIT IV						9
process, Ergodic Process, Independent increment Process, Markov Process, Counting Process, Narrow- Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS 9 Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. 9 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 60 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 9 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New <td>STOCHASTIC PR</td> <th>OCESSES</th> <th></th> <td></td> <td></td> <th></th> <td>4</td>	STOCHASTIC PR	OCESSES					4
Band Process, Normal Process, Wiener-Levy Process, Poisson, Bernoulli, Shot noise Process, Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL Interference Model – Steady State analysis – Self Service queue. REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] Khanna Publishers, 2007. [unit I] Koon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. S. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New Sons .ISSN – 0271- 6356, 2008.							
Autocorrelation Function. UNIT V 9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 IS Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. Sector Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III & IV] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. Sector Fourier Hall of India Private Ltd., New 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New							
9 QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 60 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 7 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New		•	ss, Poisson, Be	rnoulli, Shot	noise	e Proc	cess,
QUEUEING MODELS Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL ISENTING MODELS LECTURE TUTORIAL TOTAL Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] Science", 40th edition, Khanna Publishers, 2007. [unit I] Poesson Education, 2000. Science", 40th edition, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III & IV] Sons .ISSN – 0271- 6356, 2008. Sons .ISSN – 0271- 6356, 2008. Sons .ISSN – 0271- 6356, 2008. Sons .Isenth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New		iction.					0
 Poisson Process – Markovian queues – Single and Multi-server Models – Little's Formula – Machine Interference Model – Steady State analysis – Self Service queue. LECTURE TUTORIAL TOTAL 45 15 60 REFERENCES 1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] 2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. 3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] 4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 		ELS					
LECTURETUTORIALTOTAL451560REFERENCES1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I]2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000.3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV]4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008.5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New	•		ti-server Models	– Little's For	rmula	– Mac	hine
451560REFERENCES1. Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I]2. Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000.3. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV]4. Michel K. Ochi , "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008.5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New	Interference Model	- Steady State analysis - Self Servi	ce queue.				
 REFERENCES Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 			LECTURE	TUTORIA	Lľ	ТОТА	L
 Grewal B.S., "Numerical methods in Engineering and Science", 40th edition, Khanna Publishers, 2007. [unit I] Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 			45	15	(60	
 Khanna Publishers, 2007. [unit I] Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 							
 Moon, T.K., Sterling, W.C., "Mathematical methods and algorithms for signal processing", Pearson Education, 2000. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons ISSN – 0271- 6356, 2008. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 			ng and Science",	40th edition,			
 Pearson Education, 2000. Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 			thods and algorit	hms for sign	al nroc	ressinc	·"
 Richard Johnson, Miller & Freund, "Probability and Statistics for Engineers", 7th Edition, Prentice – Hall of India, Private Ltd., New Delhi (2007).[unit III &IV] Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons ISSN – 0271- 6356, 2008. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 			inous and argonn	linis for sign	ai pioc	0331112	5,
 Michel K. Ochi, "Applied Probability and Stochastic Processes," John Wiley & Sons .ISSN – 0271- 6356, 2008. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New 		-	y and Statistics for	or Engineers"	', 7th E	Editior	ı,
.ISSN – 0271- 6356, 2008. 5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New	Prentice – H	Iall of India, Private Ltd., New Dell	ni (2007).[unit III	&IV]			
5. Kenneth Hoffman, "Linear Algebra", Prentice Hall of India Private Limited, New		· · · · ·	Stochastic Proc	esses," John	Wile	y & S	ons
-			tice Hall of Indi	a Private Li	mited	. New	
· []		-				,	
6. Grewal, B.S., Higher Engineering Mathematics, 37th edition, Khanna Publishers, 2003. [unit I]		-	37th edition, Kha	anna Publishe	ers,200)3. [un	it I]

SUBCODE	SUB NAME		L	Т	P	(
YWC105B	RF MEMS		3	0	0	3
UNIT I						9
fixed/mobile	YSTEMS pheres of wireless activities, the latform, the space platform, wirele eless systems, wireless transceiver	ess standards, s	ystems and	archi		
UNIT II						9
Physical aspect substrates, self	F RF CIRCUIT DESIGN of RF circuit design, skin effect resonance frequency, quality factor C biasing, impedance mismatch effects	packaging, pra			RF	.1
UNIT III						9
micro machin MEM switch, beam springs resonators, n	abled circuit elements and models, RF d, enhanced elements, capacitors, i low voltage hinged MEM switch app uspension series switch, resonators- t cromechanical resonators, film b hanical modeling, electromagnetic n	nductors, varactoro proaches, push-p transmission line ulk acoustics	ors, MEM oull series s planar reso	switcl witch, onators	folde s, cav	ed- ity
UNIT IV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~				9
switch, capacit reconfigurable massively para	AS, enabled circuits, reconfigurable	esonator, MEM ib tuner, filters, elay digital phase	S micro-s resonator t e shifters,	witch uning	syste	m,
Phase shifter applications, 1 acoustic wave MEMS filters, MEM resonat	ASED CIRCUIT DESIGN , fundamentals, X-band RF MEMS (a-band RF MEMS phase shifter for filters, FBAR filter fundamentals, A Ka-band millimeter wave Micro n rs filter, RF MEMS Oscillators- fur p machined cavity oscillator, a 2.4 m of PLL.	or radar systems FBAR filter f machined tunable idamentals, a 14	application for PCS ap filter, a H GHz MEM	ns, Fi plicati igh-Q l Osci	ons, l 8 Mi llator,	RF Hz
		LECTURE	TUTORIA		TOTA	\L
REFERENCES		45	0	4	45	
 Hector J. I Artech Hou Vijay K. Va and Sons, I 	adan, K.J. Vinoy, K.A. Jose, "RF ME	MS and their Ap	plications",	John	Wiley	

	SUB NAME	L	Т	P	C
YWC 105C	ANTENNA SYSTEMS FOR WIRELESS APPLICATIONS	3	0	0	3
UNIT I					9
HANDSET AN	TENNAS				
quest for Efficient	formance requirements-Electrically small Antennas-classe ncy and Extended Bandwidth-Practical design-starting poi performance of typical handsets				-The
UNIT II					9
RFID TAG AN	TENNAS				.i
Tag Antennas	tals, Design considerations for RFID Tag Antennas, Effec				·•
UNIT III					9
Laptop related A Evaluation-Link	ENNA DESIGN AND EVALUATION Antenna Issues-Antenna Design Methodology-PC Card Budget model-Dualband examples-Antennas for wire tra wide band Antennas				and
Laptop related A Evaluation-Link Applications-Ul UNIT IV ANTENNA ISS	Antenna Issues-Antenna Design Methodology-PC Card Budget model-Dualband examples-Antennas for wire	eless wide			an
Laptop related A Evaluation-Link Applications-Ul UNIT IV ANTENNA ISS	Antenna Issues-Antenna Design Methodology-PC Card Budget model-Dualband examples-Antennas for wire tra wide band Antennas	eless wide			and
Laptop related A Evaluation-Link Applications-Ul UNIT IV ANTENNA ISS Microwave therr UNIT V ANTENNAS FO Antenna design wearable Anten	Antenna Issues-Antenna Design Methodology-PC Card Budget model-Dualband examples-Antennas for wire tra wide band Antennas	eless wide l trials ONS Illing and ch of Wearabl	e Area	n Netv	and worl 9 9
Laptop related A Evaluation-Link Applications-Ul UNIT IV ANTENNA ISS Microwave therr UNIT V ANTENNAS FO Antenna design wearable Anten	Antenna Issues-Antenna Design Methodology-PC Card Budget model-Dualband examples-Antennas for wire tra wide band Antennas BUES IN MICROWAVE THERMAL THERAPIES mal therapies-Interstitial Microwave Hyperthermia-clinical OR WEARABLE DEVICES AND UWB APPLICATIO requirements for wireless Body Area Network/PAN-model nas-WBAN Radio channel characterization and effect of eless systems-challenges in UWB Antenna Design-state of LECTURE	eless wide l trials ONS Illing and ch of Wearabl The art solu TUTORIA	e Area	erizatio ennas- case st TOT	and worl 9 9 0n o case tudy AL
Laptop related A Evaluation-Link Applications-Ul UNIT IV ANTENNA ISS Microwave therr UNIT V ANTENNAS FO Antenna design for wearable Antenna	Antenna Issues-Antenna Design Methodology-PC Card Budget model-Dualband examples-Antennas for wire tra wide band Antennas BUES IN MICROWAVE THERMAL THERAPIES mal therapies-Interstitial Microwave Hyperthermia-clinical OR WEARABLE DEVICES AND UWB APPLICATIO requirements for wireless Body Area Network/PAN-model nas-WBAN Radio channel characterization and effect of eless systems-challenges in UWB Antenna Design-state of LECTURE 45	eless wide l trials ONS illing and ch of Wearabl	e Area	erizatio ennas- case st	anc work 9 9 on or case tudy AL

YWC105D	SUB NAME L	Τ		Р	C
	DETECTION AND ESTIMATION THEORY 3	1		0	4
UNIT I					8
Review of Ga detection and Neyman-Pearso hypothesis test efficiency.	ND AND STATISTICAL DECISION THEORY: Jussian variables and processes; problem formulation and objusignal parameter estimation in discrete-time domain. Bayesian, on decision rules, likelihood ratio, receiver operating characteristing, locally optimum tests, detector comparison techniques, asy	min min	nim cc	ax, ompo	ano osit
UNIT II					12
Matched filter d unknown amplit	OF DETERMINISTIC SIGNALS AND RANDOM SIGNALS etector and its performance; generalized matched filter; detection ude, phase, frequency and arrival time, linear model. Estimator-corr Gaussian detection, detection of Gaussian random signal with unkno- ction.	of si elato	or, l	inea	r
Detection in the	ETRIC DETECTION: e absence of complete statistical description of observations, si tor, detectors based on quantized observations, robustness of				<u>.</u>
					8
ESTIMATIO Minimum varia sufficient statisti	N OF SIGNAL PARAMETERS: nce unbiased estimation, Fisher information matrix, Cramer-R cs, minimum statistics, complete statistics; linear models; best line simum likelihood estimation, invariance principle; estimation	ear u	nbia	ased	8
ESTIMATIO Minimum varia sufficient statisti estimation; may Bayesian estima error estimation, UNIT V SIGNAL EST	nce unbiased estimation, Fisher information matrix, Cramer-R cs, minimum statistics, complete statistics; linear models; best line timum likelihood estimation, invariance principle; estimation tion: philosophy, nuisance parameters, risk functions, minimum n maximum a posteriori estimation. IMATION IN DISCRETE-TIME: Linear Bayesian estimation,	ear un effic nean	nbia cienc squ	ased cy; 1are	
ESTIMATIO Minimum varia sufficient statisti estimation; max Bayesian estima error estimation, UNIT V	nce unbiased estimation, Fisher information matrix, Cramer-R cs, minimum statistics, complete statistics; linear models; best line kimum likelihood estimation, invariance principle; estimation tion: philosophy, nuisance parameters, risk functions, minimum m maximum a posteriori estimation. IMATION IN DISCRETE-TIME: Linear Bayesian estimation, an filtering.	ear un effic nean We	nbia cienc squ eine	ased cy; lare	7
ESTIMATIO Minimum varia sufficient statisti estimation; may Bayesian estima error estimation, UNIT V SIGNAL EST	nce unbiased estimation, Fisher information matrix, Cramer-R cs, minimum statistics, complete statistics; linear models; best line timum likelihood estimation, invariance principle; estimation tion: philosophy, nuisance parameters, risk functions, minimum m maximum a posteriori estimation. IMATION IN DISCRETE-TIME: Linear Bayesian estimation, an filtering. LECTURE TUTORIA	ear un effic nean We	nbia cienc squ eine T (ased cy; lare or	7
Minimum varia sufficient statisti estimation; max Bayesian estima error estimation, UNIT V SIGNAL EST filtering, Kalm REFERENCES	nce unbiased estimation, Fisher information matrix, Cramer-R cs, minimum statistics, complete statistics; linear models; best line timum likelihood estimation, invariance principle; estimation tion: philosophy, nuisance parameters, risk functions, minimum m maximum a posteriori estimation. IMATION IN DISCRETE-TIME: Linear Bayesian estimation, an filtering. ILECTURE TUTORL 45 0	ear un effic nean We AL	eine	ased cy; lare er	7

	ODE	SUB NAME		L	Т	Р	C
YRM1		RESEARCH METHODOLOG	Y AND IPR	3	1	0	4
researo proble	ing of resea ch problem m. Approa	rch problem, Sources of research , Errors in selecting a research ches of investigation of solutions tation, Necessary instrumentation	problem, Scope for research pr	e and objecti	ves o	of rese	-
UNIT	II						9
techni	cal writing	re studies approaches, analyst, how to write report, Paper D , a presentation and assessment b	eveloping a Re	esearch Prop			
UNIT	III						9
and D Scenar	evelopmen rio: Interna ing under F	ctual Property: Patents, Designs, t: technological research, innova tional cooperation on Intellectua PCT.	ation, patenting	, developmer	nt. Int	ternati	onal
UNII	T A						ש
							. <u>.</u>
	0	ope of Patent Rights. Licensing a		echnology. P	atent		.1
inform	nation and o	ope of Patent Rights. Licensing a latabases. Geographical Indicatio		echnology. P	atent		0
inform UNIT	nation and o V	latabases. Geographical Indicatio	ons.			PR of	9
inform UNIT New D	nation and o V Development	1 0 0	ons. System. New deve	elopments in I	PR; IF R and T		
inform UNIT New D Biolog REFE	nation and o V Development ical Systems RENCES	latabases. Geographical Indications in IPR: Administration of Patent S	ons. System. New deve al knowledge Ca LECTURE 45	elopments in I se Studies, IPI TUTORIA 15	PR; IF R and T	IITs. TOTA 60	

SUBCODE	SUB NAME	L	Т	Р	C
YWC204A	WIRELESS NETWORK SECURITY	3	1	0	4
UNIT I				9	

WIRELESS INFORMATION WARFARE

Protecting privacy and means of communication, taxonomies of wireless communication based on network architecture mobility, model for cost effective risk management, cryptographic attacks, key management, securing wireless LANS, Electromagnetic capture threats, wireless threat analysis, securing wireless LAN countermeasures.

UNIT -II

WIRELESS LAN TRANSMISSION MEDIA

WAP security architecture, BLUETOOTH, wireless access to internet. Cryptographic Security: Classical crypt analysis, digital cryptography, DES modern cipher breaking, non-keyed message digest, public key cryptography, Diffie – Hellman and Elliptic curve cryptography, comparison of public key crypto systems. 9

UNIT –III

NETWORK SECURITY COMPONENTS Network security model, network intrusion protection and detection, Host based security, virtual private networking, event correlation, wireless security components, secure configuration, secure authentication, encryption, wireless device placement.

UNIT –IV

INTEGRATING WIRELESS ACCESS INTO THE NETWORK SECURITY PROCESS

Logging wireless events, policy issues, accessing wireless network security, change control and device administration, wireless security models, Cisco implementation with LEAP,, WLAN authentication and key management with radius, wireless access with IP security, secure wireless public access, secure wireless point to point connectivity.

UNIT-V

HARDWARE PERSPECTIVE FOR END TO END SECURITY IN WIRELESS APPLICATION

Taxonomy of communication systems, protocol sensitive communication security, evolution towards wireless, hardware and software avenues, encryptor structures in wireless- interception and vulnerability of wireless systems, communication ESMs and interception receivers, SAW technology.

LECTURE	TUTORIAL	TOTAL
45	15	60

REFERENCE BOOKS

- 1. Randall K. Nichols, Panos C. Lekkas, "Wireless Security Models, Threats and solutions". McGrawHill, 2005.
- 2. Brian Carter, Russel Shumway, "Wireless Security End to End", CISSPI, 2005.
- 3. Merrit Maxim, David Pollino, "Wireless Security", RSA Press, 2005.
- 4. Cyrus Peikari, Seth Fogie, , "Maximum Wireless Security", SAMS, 2005.

SUBCODE	SUB NAME	L	Т	P	C		
YWC204B	ADHOC NETWORKS	3	0	0	3		
UNIT I					9		
WIRELESS LAN, PAN, WAN AND MAN							
Introduction to adhoc networks – definition, characteristics features, applications. Characteristics							
of wireless ch	annel, Fundamentals of WLANs, IEEE 802.11 standard	I, HIPI	ERLA	N Sta	ndard,		

First-, Second-, and third- generation cellular systems, WLL, Wireless ATM, IEEE 802.16 standard, HIPERACCESS, AdHoc Wireless Internet.

UNIT II

MAC. ROUTING AND MULTICAST ROUTING PROTOCOLS

9

9

9

9

MAC Protocols: Design issues, goals and cla			
reservation and scheduling mechanisms, Protocol			
Design issues and classification, Table-driven, Or	•	• •	
protocols with efficient flooding mechanisms, Hi	•		•
Multicast Routing Protocols: Design issues	L		ference mode
classification, Tree-based and Mesh-based protoco	ols, Energy-efficie	ent multicasting.	
UNIT III			9
TRANSPORT LAYER AND SECURITY PROT			
Transport layer Protocol: Design issues, goals a			
Networks, Security, Security requirements, Issu		0 1	· 1 · · · · ·
Network security attacks, Security routing. Quality		•	· ·
QoS, Classification of QoS solutions, MAC layer solu			
HIPERMAN WIRELESS SECURITY - WEP/WPA(E	ENCRYPTION AN	ND DECRYPTIO	······
UNIT IV			9
schemes, System power management schemes.			
dissemination, Date gathering, MAC protocols, UNIT V			
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS	location discove	ery, Quality of a s	ensor networl 9
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route	location discove	ery, Quality of a s End-to-end dela	y performance
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route- Communication throughput performance, Packet	location discove	ery, Quality of a s End-to-end dela	y performance
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route	location discove -discovery time, loss performanc	ery, Quality of a s End-to-end dela ce, Route reconfi	y performance guration/repa
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route- Communication throughput performance, Packet	location discover -discovery time, loss performance LECTURE	ery, Quality of a s End-to-end dela ce, Route reconfi TUTORIAL	y performance guration/repa
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route Communication throughput performance, Packet time, TCP/IP based applications.	location discove -discovery time, loss performanc	ery, Quality of a s End-to-end dela ce, Route reconfi	y performance guration/repa
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route Communication throughput performance, Packet time, TCP/IP based applications. REFERENCES:	location discover -discovery time, loss performanc LECTURE 45	ery, Quality of a s End-to-end dela ce, Route reconfi TUTORIAL 0	y performance guration/repa TOTAL 45
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route Communication throughput performance, Packet time, TCP/IP based applications.	location discover -discovery time, loss performanc LECTURE 45	ery, Quality of a s End-to-end dela ce, Route reconfi TUTORIAL 0	y performance guration/repa TOTAL 45
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route- Communication throughput performance, Packet time, TCP/IP based applications. REFERENCES: 1. C. Siva Ram Murthy and B.S. Manoj, AdHoc With	location discover -discovery time, loss performanc LECTURE 45 ireless Networks:	ery, Quality of a s End-to-end delay ce, Route reconfi TUTORIAL 0 Architectures and	y performance guration/repa TOTAL 45 d protocols,
dissemination, Date gathering, MAC protocols, UNIT V PERFORMANCE ANALYSIS ABR beaconing, Performance parameters, Route- Communication throughput performance, Packet time, TCP/IP based applications. REFERENCES: 1. C. Siva Ram Murthy and B.S. Manoj, AdHoc Wi Prentice Hall PTR, 2004	location discover -discovery time, loss performance LECTURE 45 ireless Networks: rotocols and Syste eless Networks, C	ery, Quality of a s End-to-end dela ce, Route reconfi TUTORIAL 0 Architectures and ems, Prentice Hall	y performanc guration/repa TOTAL 45 d protocols, 1 PTR, 2001

 Stefano Basagni, Marco Conti, Silvia Giordano and Ivan Stojmenovic, Mobile AdHoc Networking, Wiley – IEEE press, 2004

SUBCODE	SUB NAME	L	Т	Р	С
YWC204C	HIGH PERFORMANCE COMPUTING NETWORKS	3	0	0	3
UNIT I		*			9
•	puter, Cable television and Wireless network, networking yered architecture, traffic characterization and QOS,	U I I I I I I I I I I I I I I I I I I I			
elements and ne	twork mechanisms.				
elements and ne	twork mechanisms.				9
UNIT II	twork mechanisms. TCHED NETWORKS				9
UNIT II PACKET SWI		DDI, DQD	B, frar	ne rel	
UNIT II PACKET SWI OSI and IP mod	TCHED NETWORKS	DDI, DQD	B, frar	ne rel	
UNIT II PACKET SWI OSI and IP mod	TCHED NETWORKS lels Ethernet (IEEE 802.3); token ring (IEEE 802.5), Fl	DDI, DQD	B, frar		

Overview, internet protocol, TCP and VDP, Performance of TCP/IP networks circuits

switc	hed networks SONET DWDM, Fiber to l	home, DSL, Intell	igent networks,	CATV.
UNI	ſ-IV			9
	AND WIRELESS NETWORKS			
	features addressing, signaling and routing			
	gement and control, BISDN, Inter working		less channel, lin	ık level design
chanr	el access Network design and wireless netwo	orks		
UNI	Г-IV			9
	ICAL NETWORKS AND SWITCHING			
	al links – WDM systems, cross-connects	optical LAN's of	otical paths and	networks TDS
- -	DS modular switch designs- Packet switching		· •	
		•	······	
		LECTURE	TUTORIAL	TOTAL
		45	0	45
REF	ERENCES:			
1.	Jean warland and Pravin Varaiya, "High	n Performance Co	mmunication N	letworks",
	2nd Edition, Harcourt and Morgan Kanf	ffman, London,20	000	
2.	Leon Gracia, Widjaja, "Communication	networks", Tata	Mc Graw Hill,	New
	Delhi,2000 3. Lumit Kasera, Pankaj Seth	ni, "ATM Networ	ks", Tata McGr	aw Hill, New
	Delhi,2000			
3.	Behrouz.a. Forouzan, "Data Communica	ation and Networ	king", Tata Mc	Graw Hill,
	New Delhi,2004.			
4.	Itamar Elhanany and Mounir Hamdi, "H	High-performance	Packet Switchi	ng
	Architectures", Springer Publications, 2	011.		
5.	J.F. Kurose & K.W. Ross,"Computer N	etworking - A top	down approac	h featuring
	the internet", Pearson education, fifth ed	lition.		-
6.	Nader F.Mir, Computer and Communication	ation Networks, f	irst edition, 200)6.
7.	Walrand .J. Varatya, High performance			

- Harcourt Asia Pvt. Ltd. 2nd Edition, 2000.
- Leon-Garcia, WIDJAJA, "Communication networks", TMH seventh reprint 2002.
 Aunurag kumar, D. MAnjunath, Joy kuri, "Communication Networking", Morgan

COURSE CODE	COURSE NAME	L	Т	P	С
YEC204D	INTERNET OF THINGS	3	0	0	3
UNIT I INTRODU	ICTION AND ENABLING TECHNOI	LOGIES IN	IOI	1	9
IoT, Machine to Mac	hine, Web of Things, Definition- Major	component	s if Ic	oT de	vices-
Control Units-Sensors	s-Communication Modules-Power Sourc	es Vision-	Chara	octeri	stics -
Layered Architecture-	Landscape IoT Functional View-IoT	elated Inter	net T	echn	ology-
cloud computing-Netw	works and Communications related to Ic	T-Processe	s rela	ted to	o IoT-
Data Management rel	ated to IoT-Security Privacy and Trust-I	Devices lev	el ene	rgy i	ssues-
Standards related to Io	Т				
UNIT II RESO	URCE MANAGEMENT IN THE INT	ERNET OI	<u>7</u>		9
THINGS					

Clustering - Software Agents - Data Synchronization - Clustering Principles in an Internet of Things Architecture - The Role of Context - Design Guidelines -Software Agents for Object – Data Synchronization- Types of Network Architectures - Fundamental Concepts of Agility and Autonomy-Enabling Autonomy and Agility by the Internet of Things-Technical Requirements for Satisfying the New Demands in Production - The Evolution from the RFID-based EPC Network to an Agent based Internet of Things- Agents for the Behaviour of Objects

UNIT III THE ARCHITECTURE, PLATFORMS, SERVICES9The Layering concepts , IoT Communication Pattern, IoT protocol Architecture, The
6LoWPAN, Platforms - IBM watson-Intel Platform- Carriot Platform- Webnms-device
WISE9UNIT IV SCALABLE INTEGRATION FRAMEWORK9

Introduction- IPV6 Potential- IoT6- IPV6 for IoT- Adapting IPV6 to IoT requirement- IoT6 architecture - DigCovery- IoT6 Integration with cloud and EPICS- Enabling Heterogeneous Integration- IoT6 Smart Office use case- Scalability perceptive.

UNIT VIOT APPLICATIONS

Smart Environments and Smart Space creation - Connected Devices illustration-Industrial IoT-IERC application Domains-Smart Environment Monitoring- Smart Energy - Smart building- Smart Transport and mobility-IoT Smart X applications

	LECTURE	TUTORIAL	PRACTICAL	TOTAL
	45	0	0	45
DEFEDENCES				

REFERENCES

- 1. Ovidiu Vermesan, Peter Friess, "Internet of Things- From Research and Innovation to market Deployment", River Publishers, 2014.
- 2. Arshdeep Bahga, Vijay Madisetti Internet of Things: A Hands-On Approach Hardcover – Madisetti Publishers, 2014
- 3. Samuel Greengard, "The Internet of Things", MIT Press, 2015.
- 4. http://postscapes.com/internet-of-things-resources/

YWC205A SO UNIT I FUZZY SET THI Introduction to Neur	-								3	0	0	3 10
FUZZY SET TH	-	S. G. C.										10
	-	6 - 6 O										k
 Set-theoretic O Rules and Fuzzy F Fuzzy Reasoning – 1 Tsukamoto Fuzz 	perations – M easoning – Ex Fuzzy Inference	Member xtension e System	Function Principles – Man	ion F ple an amdani	Formu nd Fu ni Fuzz	ulation izzy F zy M	on and Relatic Iodels	d Para ons – 1 – S	amete Fuzz ugen	erizati zy If-T	on – Then R	Fuzzy ules -

OPTIMIZATION

Derivative-based Optimization – Descent Methods – The Method of Steepest Descent – Classical Newton's Method – Step Size Determination – Derivative-free Optimization – Genetic Algorithms – Simulated Annealing – Random Search – Downhill Simplex Search.

UNIT III

9

NEURAL NETWORKS

Supervised Learning Neural Networks – Perceptrons - Adaline – Backpropagation Mutilayer Perceptrons – Radial Basis Function Networks – Unsupervised Learning Neural Networks – Competitive Learning Networks – Kohonen Self-Organizing Networks – Learning Vector Quantization – Hebbian Learning.

9

8

UNIT IV

NEURO FUZZY MODELING

Adaptive Neuro-Fuzzy Inference Systems – Architecture – Hybrid Learning Algorithm – Learning Methods that Cross-fertilize ANFIS and RBFN – Coactive Neuro Fuzzy Modeling – Framework Neuron Functions for Adaptive Networks – Neuro Fuzzy Spectrum.

UNIT V

APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
REFERENCES			

1. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.

- 2. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- 3. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.
- 4. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence PC Tools", AP Professional, Boston, 1996.
- 5. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2003.
- 6. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995.
- 7. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.
- 8. Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998.
- 9. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Addison Wesley, 1997.
- 10. S. N. Sivanandam, S. Sumathi and S. N. Deepa, "Introduction to Fuzzy Logic using MATLAB", Springer, 2007.
- 11. J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2004.

SUBCODE	SUB NAME	L	Т	P	C
YWC205B	MULTIMEDIA COMPRESSION TECHNIQUES	3	0	0	3
UNIT I					9

INTRODUCTION Spectral features of Multimedia – Graphics and Image Data Representations -Fundamental Concepts in Video and Digital Audio – Storage requirements for multimedia applications -Netro for Compression - Taxonomy of compression techniques – Overview of source coding, source models, scalar and vector quantization theory – Evaluation techniques – Error analysis and methodologies UNIT II	eed
for Compression - Taxonomy of compression techniques – Overview of source coding, source models, scalar and vector quantization theory – Evaluation techniques – Error analysis and methodologies	
methodologies	
	~
TEXT COMPRESSION	9
Compaction techniques – Huffmann Arithmatic coding – Shannon-Fano coding algorithr	ns.
coding – Adaptive Huffmann Coding – Dictionary techniques – LZW family	
UNIT III	9
AUDIO COMPRESSION	
Audio compression techniques - μ - Law and A- Law companding. Frequency domain	
and filtering – Basic sub-band coding – Application to speech coding – G.722 – Application audio coding – MPEG audio, progressive encoding for audio – Silence compression, spe	
compression techniques – Formant and CELP Vocoders	cen
	9
IMAGE COMPRESSION	
Predictive techniques – DM, PCM, and DPCM: Optimal Predictors and Optimal	
Quantization- contour based compression - Transform Coding - JPEG Standard - Sub-band	
coding algorithms: Design of Filter banks – Wavelet based compression: Implementation us	ing
filters – EZW, SPIHT coders – JPEG 2000 standards - JBIG, JBIG2 standards	
UNIT V	9
VIDEO COMPRESSION	
Video compression techniques and standards – MPEG Video Coding I: MPEG – 1 and 2– MPEG Video Coding II: MPEG – 4 and 7 – Motion estimation and compensation	
techniques – H.261 Standard – DVI technology – PLV performance – DVI real time	
compression – Packet Video	
LECTURE TUTORIAL TOTA	L
45060REFERENCES	
1. Khalid Sayood: Introduction to Data Compression, Morgan Kauffman Harcourt India,2 ⁴	ıa
2. Edition, 2000.	
3. David Salomon: Data Compression – The Complete Reference, Springer Verlag N	lew
YorkInc., 2 nd Edition, 2001.	
4. Yun Q.Shi, Huifang Sun : Image and Video Compression for Multimedia Engineering -	
 Fundamentals, Algorithms & Standards, CRC press, 2003. Peter Symes : Digital Video Compression, McGraw Hill Pub., 2004. 5. Mark Nelson: 	
 7. Data compression, BPB Publishers, New Delhi, 1998. 	
8. Mark S.Drew, Ze-Nian Li : Fundamentals of Multimedia, PHI, 1 Edition, 2009	
9. Watkinson, J : Compression in Video and Audio, Focal press, London. 1995.	
 Jan Vozer : Video Compression for Multimedia, AP Profes, NewYork, 1995 Andy Beach, "Real World Video Compression", Pearson Education, 2010. 	
12. Irina Bocharova, "Compression for Multimedia", Cambridge University Press, 2010.	
13. Arjuna Marzuki, Ahmad Ismat Bin Abdul Rahim and Mourad Loulou, "Advances in	
5	
14. Monolithic Microwave Integrated Circuits: Modeling and Design Technologies", (Pren Reference source), 2011.	nier

SUBCODE	SUB NAME	L	Т	P	C
YWC205C	SOFTWARE DEFINED RADIO	3	0	0	3

Design Considerations- Candidate Architectures for SDR – Radio frequency front end Implementations for Multimode SDRS: Evolution of RF Front Ends – Superheterodyne Architecture- The AS 2/6 Product Family – Dual Band, Six Mode – Alternative RF Front End

UNIT II DATA CONVERSION IN SOFTWARE DEFINED RADIOS:

The Importance of Data Converters in Software Defined Radios-Converter Architectures – Converter Performance Impact on SDR-Superconductor Microelectronics: A Digital RF Technology for Software Radios: Introduction-Rapid Single Flux Quantum Digital Logic – Cryogenic Aspects- Superconductor SDR for Commercial Applications & Military Applications – The Digital Front End: Bridge Between RF and Baseband Processing: The digital front end-Digital up and down conversions-Channel Filtering-Sample Rate Conversion.

Software defined radio and Software Radio Concepts - Realization of Software

Based Radio - Front end Technology: Radio Frequency Translation and Software Defined Radio: Requirements and Specifications- Receiver Design Considerations- Transmitter

UNIT III BASEBAND TECHNOLOGY:

Baseband Processing for SDR-The Role of Baseband Architectures – Base Band Component Technologies-Design Tools and Methodologies-System design and maintenance – Parameterization-A Technique for SDR Implementation – Definitions-Adaptability – Parameterization of Standards – Signal Processing Issues – Adaptive Computing IC Technology for 3G Software – Software defined Radio – A Solution for Mobile Devices – The Mobile Application Space and the need for Processing Power- SDR Baseband processing – Hardware with Software Programmability – The Computational Power Efficiency Required by 3 G Algorithms – Example Case Studies.

UNIT IV SOFTWARE TECHNOLOGY

Software Engineering for Software Radios-Overview of Vanu Systems – The Importance of software in software Radio – Software Portability-Commodity PC hardware-Signal Processing software-Control – Software-Performance-Future Directions – Software Download for Mobile Terminals – Downloading Technologies for SDR – Standards for downloading-Seamless Upgrading 'on the FLY' security of download –software Architectures for Download- Future Applications of SDR Downloading.

UNIT V RECONFIGURATION AND WAVEFORM DESCRIPTION

Protocols and Network Aspects of SDR-Protocol stacks: SAPS vs. Reconfigurability-Approaches to protocol stack reconfiguration – Reconfiguration Management and control – Network support for software radios Conclusions – The Waveform Description Language: The specification problem – WDL overview – FM3TR example – Refinement to an implication – WDL details – A practical WDL support environment.

	LECTURE	TUTORIAL	TOTAL
	45	0	45
REFERENCES			
1. Walter Tuttlebee, "Software Defined Radio:	Enabling Technolo	ogies", Wiley	
Publications, 2002.			
2. Paul Burns, "Software Defined Radio for 3	G", Artech House,	2002	
3. Markus Dillinger, "Software Defined Radio	o: Architectures, Sy	stems and	
Functions", 2003.	•		

Architectures.

26

9

9

9

9

SUBCODE	SUB NAME		L	Т	P	C
YWC205D	FUNDAMEN	TALS OF 5G MOBILE AND	3	0	0	3
	WIRELESS T	ECHNOLOGY				
UNIT I						9
INTRODUCTIO						
		wenty-five billion connected devices				ts -
		ey performance indicators 5G system				
		1 Massive machine-type communicat				
		amic radio access network 3- Lean sy			ane -	
		-Spectrum toolbox -The 5G architect	ure -High-	-level		
	the 5G architecture					
UNIT II						9
MACHINE-TY	PE COMMUNICA	TIONS				.i
Introduction - Us	e cases and categor	ization of MTC - MTC requirements	-Fundame	ental to	echniq	ues
		t packets -Non-orthogonal access prot				
		oonents - Summary of mMTC feature				
		echnology components				
-						
UNIT III						9
	S FOR 5G MOBIL					
		- WiFi and Femtocells as Candidate				
		ors vs Outdoors -Capacity Limits and				ith
		tenna Techniques -Gains with Small			Data	
Demand - Approx	ach and Methodolog	gy - Demand vs Capacity - Small-Cel	ll Challeng	ges		
UNIT IV						9
	D-ACCESS TECH	NOLOCIES				
		iser communications-Orthogonal mul	tinle acce	CC CVC	tome	
		tems -Capacity limits of multiple-acc				
		m - Filter-bank based multi-carrier - V				м
		t multiple access - Non-orthogonal m				
) - Interleave division multiple access				
		erology for small-cell deployments -				633
· ·		nmunication -Medium access control				Α_
		pe communication - The massive acc				
access reservation	-	pe communication - The massive acc	Less proon		Atenui	ng
-Direct random a						
	00035					
UNIT V						9
SECURITY FO	R 5G COMMUNI	CATIONS				
Overview of a Po	otential 5G Commu	nications				
System Architect	ure -Security Issues	and Challenges in 5G Communication	ons			
Systems - User E	quipment - Access	Networks - Mobile Operator's Core N	Jetwork - 1	Exterr	nal IP	
Networks	• •	*				
SON Evolution f	or 5G Mobile Netw	orks -SON in UMTS and LTE -The N	Need for S	ON ir	n 5G -	
Evolution toward	s Small-Cell Domin	nant HetNets -Towards a New SON A	Architectu	re for	5G -	
			NEODI	-		Ŧ
		LECTURE 1 45	FUTORIA		ТОТА 45	۱L
REFERENCES		40	0		43	
IN D.D.D.K.D.NU. H.N.						
	n Rodriguez" Fund	amentals of 5G Mobile Networks", Jo	ohn Wiley	8 So	ons I t	d

SUBCODE	SUB NAME		L	Т	Р	С
YWC302A	QUALITY OF SERVICE IN COMMUNICATION	WIRELESS	3	0	0	3
UNIT I	commenterment		Ì			9
Qos of real t correction cod delay-end-to-e packet loss p performance- traffic load-tru UNIT II QOS IN CEL QoS Definiti Classification	KET NETWORKS-AN INTROD me services- delay-frame delay- ing delay-jitter buffer delay-packet nd delay objectives- delay variati robability-subjective testingmean blocking probability-"trunked char hk utilization factor LULAR SYSTEMS - PART I on- Need for QoS Differentiati IP-Based QoS Motivation of IP	packetization dela t queuing delay-p on or "jitter"- s opinion score (mel" systemsof ion- QoS Stand QoS Mechanism	oropagation d ource of de mos)-the "er fered traffic ardization - as QoS Para	elay-e lay va nodel' -oad- Data digms	effect ariatio "cod units Servi 5 IP-Q	of on- ec of 9 ces QoS
cellular system	n UMTS Networks Traffic Hand ns- Service Experience -Radio n- Application Design- Service-Enh	Network Perform	nance- Netw			
UNIT III						9
Transport and Performance. UNIT IV	Application Layer Effects-Impact	t of Network Di	mensioning	in the	e Serv	vice 9
Challenges be networks- Rou networks	SERVICE IN AD HOC NETWO hind QOS Provisioning in Adl ting with quality of service const	hoc networks-Ro				hoc
UNIT V						9
WSN challeng Mechanisms to Network Topo	ELESS SENSOR NETWORKS es-Difficulties of QOS provisioning Achieve QOS in WSN- Resource logy-Mixed Traffic- Power, band Network QoS, QoS Aware Q	e Constraints-Plat width, meomory	form Heterog size constrat	geneit ints-A	y-Dyn pplica	ami ation
		LECTURE	TUTORIA		TOTA	L
REFERENCES		45	0	4	45	
 Kun I. Amitab 	Park, Ph.D."Qos In Packet Networks h Mishra "Security And Quality Of rks"Cambridge University Press	Service In Ad Ho		1		

- 3. G. Gómez and R. Sánchez" End-to-End Quality of Service over Cellular Networks" 2005 John Wiley & Sons Ltd
- 4. Hwee-Xian Tan "Quality of service in wireless sensor networks".

	SUB NAME		L	Т	P	С
YWC302B	TELECOM NETWO MANEGEMENT	RK PLANING AND	3	0	0	3
UNIT I				i		9
OVERVIEW	OF NETWORK PLANNIN	١G				
Network plann	ne Telecom context -Requir ing processes-Overall plans on among technical, busines	per network layer and tech	nology- Solu	tion m	apping	g pe
UNIT II						9
customer segm Traffic units f process-Origin	ments-Services definition ent-Service forecasting per s or service characterization- /destination of the traffic flow d Intercontinental networks-	egment-Service bundling-S Reference periods for dim ws in Local, Metropolitan, I	Service securit ensioning-Tra	y affic a		-
UNIT III						ç
modelling for s	ervices- Cycle life amortizat	ion versus modernization -				9
UNIT IV						
UNIT IV NETWORK I	DESIGN, DIMENSIONING	AND OPTIMIZATION				
NETWORK I Core Network Planning-Speci	DESIGN, DIMENSIONING -Access Network -Basic op al issues for rural network		cific Issues of	f Radi	o Net	wor
NETWORK I Core Network Planning-Speci UNIT V	-Access Network -Basic of al issues for rural network		cific Issues of	f Radi	o Net	wor
NETWORK I Core Network Planning-Specie UNIT V DATA GATH Geographical in category -Dema and infrastructu	-Access Network -Basic of al issues for rural network	ea -Demand of services in researched services in researched services in researched services in researched services researched	elative penetra mation for the	tion pe	er custe ng net	wor 9 0me wor
NETWORK I Core Network Planning-Speci UNIT V DATA GATH Geographical in category -Dema and infrastructu	-Access Network -Basic op al issues for rural network ERING nformation for the studied are and of traffic, usually express ure-Telecommunication equi	ea -Demand of services in researched services in researched services in researched services in researched services researched	elative penetra mation for the	tion pe existi OS req	er custe ng net	wor 9 0 me wor ents
NETWORK I Core Network Planning-Speci UNIT V DATA GATH Geographical in category -Dema and infrastructu	-Access Network -Basic op al issues for rural network ERING nformation for the studied are and of traffic, usually express ure-Telecommunication equi d Operational data	ea -Demand of services in resed as traffic matrices-Infor pment characteristics and c	elative penetra mation for the capabilities-QC	tion pe existi DS req	er custe ng net juirem	wor 9 ome wor ents

SUBCODE	SUB NAME	L	T	P	C
YWC302C	REGULATION AND POLICY IN THE TELECOMMUNICATIONS INDUSTRY	3	0	0	3
UNIT I					9
THE BIG PIC	CTURE: INTRODUCTION TO TELECOMMUNICAT	IONS R	EGU	LATI	ON
	Technology in Context Why Regulate?-Regulatory Or				
	Looking Ahead - A LEVEL PLAYING FIELD:				
	COMPETITION- Competitive Markets -Sector Regulation		ompet	ition I	Law
	nalysis - Control of Mergers and Acquisitions-Regulating	Prices-			T
UNIT II					
GROWING T	THE MARKET: LICENSING AND AUTHORIZING S	FRVIC	ES-In	troduc	tio
	wards General Authorization - Licensing Objectives an				
	norization Principles and Procedures-Special Authorization				
	Global Standards Making and Compliance-	Situatio	110 21	censiii	51
	BILE: MANAGING THE SPECTRUM Introduction -	- Changi	ng De	emand	s fe
	ning and Technical Standards -Mechanisms for Assignin				
	ectrum- Flexibility in Spectrum	0	0	I	
	×				Ī
UNIT III	APACITY TO CONNECTIVITY: NETWOR	K A	CCES	S A	AN
UNIT III	PACITY TO CONNECTIVITY: NETWOR	K A	CCES	S A	i
UNIT III FROM CA INTERCONN	PACITY TO CONNECTIVITY: NETWOR				٩N
UNIT III FROM CA INTERCONN Introduction-A	APACITY TO CONNECTIVITY: NETWOR	ing Inter	conne	ction r	٩N
UNIT III FROM CA INTERCONN Introduction-A Cross-border In	APACITY TO CONNECTIVITY: NETWOR ECTION ccess and Interconnection -Forms of Interconnection-Setti	ing Inter	conne	ction r	AN ice
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV	APACITY TO CONNECTIVITY: NETWOR ECTION ccess and Interconnection -Forms of Interconnection-Settin nterconnection-New Paradigms and New Challenges- Disp	ing Inter oute Reso	conne	ction r	AN ice
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI	APACITY TO CONNECTIVITY: NETWOR IECTION access and Interconnection -Forms of Interconnection-Sett Interconnection-New Paradigms and New Challenges- Disp	ing Inter oute Reso SERVI	connection	ction r - Frends	AN rice
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po	APACITY TO CONNECTIVITY: NETWOR IECTION ccess and Interconnection -Forms of Interconnection-Settinterconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND olicy Rationale-Types of Universal Service Regimes-Reformation	ing Inter oute Reso SERVI	connection	ction r - Frends	AN ice
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po	APACITY TO CONNECTIVITY: NETWOR IECTION access and Interconnection -Forms of Interconnection-Sett Interconnection-New Paradigms and New Challenges- Disp	ing Inter oute Reso SERVI	connection	ction r - Frends	AN rice
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Pc Strategies for I	APACITY TO CONNECTIVITY: NETWOR IECTION ccess and Interconnection -Forms of Interconnection-Settinterconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND olicy Rationale-Types of Universal Service Regimes-Reformation	ing Inter oute Reso SERVI	connection	ction r - Frends	AN ice ar cess
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V	APACITY TO CONNECTIVITY: NETWOR IECTION access and Interconnection -Forms of Interconnection-Settin Interconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND Dicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion -	ing Inter oute Reso SERVI rming U	connection olution CE -7 nivers	ction r - Frends al Acc	AN ice ar cess
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL D	APACITY TO CONNECTIVITY: NETWOR IECTION ccess and Interconnection -Forms of Interconnection-Settin nterconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND olicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion -	ing Inter oute Resc SERVI rming U RAVE N	connec olution CE -7 nivers	rrends al Acc	AN ice an cess
UNIT III FROM CA INTERCONN Introduction-A Cross-border II UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, I	APACITY TO CONNECTIVITY: NETWOR IECTION access and Interconnection -Forms of Interconnection-Settin Interconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND oblicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion - FUTURE: REGULATORY CHALLENGES IN A BE Ubiquity, and Web 2.0 - Regulating Digital Content- Balan	SERVI SERVI rming U RAVE N	CE -7 niversa	rrends al Acc WOR al Pro	AN ice ar cess LD
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, I Rights Neutra	APACITY TO CONNECTIVITY: NETWOR IECTION access and Interconnection -Forms of Interconnection-Settin Interconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND olicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion - FUTURE: REGULATORY CHALLENGES IN A BE Ubiquity, and Web 2.0 - Regulating Digital Content- Balan ality of Access- Protecting Privacy- Cybersecurity Concern	SERVI SERVI rming U RAVE N	CE -7 niversa	rrends al Acc WOR al Pro	AN ice ar cess LD
UNIT III FROM CA INTERCONN Introduction-A Cross-border II UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, I	APACITY TO CONNECTIVITY: NETWOR IECTION access and Interconnection -Forms of Interconnection-Settin interconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND olicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion - FUTURE: REGULATORY CHALLENGES IN A BE Ubiquity, and Web 2.0 - Regulating Digital Content- Balant ality of Access- Protecting Privacy- Cybersecurity Concern	SERVI SERVI rming U RAVE N acing Inte s - Green	CE -7 nivers	rrends al Acc WOR al Proj Regul	AN ice ar cess LD per atic
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, I Rights Neutra	APACITY TO CONNECTIVITY: NETWOR IECTION ccess and Interconnection -Forms of Interconnection-Settinterconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND olicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion - FUTURE: REGULATORY CHALLENGES IN A BE Ubiquity, and Web 2.0 - Regulating Digital Content- Balantality of Access- Protecting Privacy- Cybersecurity Concernation ILECTURE TI	ing Inter oute Resc SERVI rming U RAVE N Icing Inte s - Green	CE -7 nivers EEW V ellectu n ICT-	ction r - Frends al Acc WOR al Pro Regul FOTA	AN ice ar cess LD per atic
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, I Rights Neutra in a Global Era	APACITY TO CONNECTIVITY: NETWOR IECTION access and Interconnection -Forms of Interconnection-Settinterconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND Dicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion - FUTURE: REGULATORY CHALLENGES IN A BE Ubiquity, and Web 2.0 - Regulating Digital Content- Balantality of Access- Protecting Privacy- Cybersecurity Concern I Image: Comparison of the second se	SERVI SERVI rming U RAVE N acing Inte s - Green	CE -7 nivers EEW V ellectu n ICT-	rrends al Acc WOR al Proj Regul	AN ice ar ess LD per atic
UNIT III FROM CA INTERCONN Introduction-A Cross-border II UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, U Rights Neutra in a Global Era	APACITY TO CONNECTIVITY: NETWOR IECTION ccess and Interconnection -Forms of Interconnection-Settinterconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND Dicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion - FUTURE: REGULATORY CHALLENGES IN A BE Ubiquity, and Web 2.0 - Regulating Digital Content- Balantality of Access- Protecting Privacy- Cybersecurity Concern I Image: Comparison of the second sec	ing Inter oute Reso SERVI rming U RAVE N acing Inte s - Green UTORIA 0	CE -7 nivers EEW Vellectu n ICT-	rends al Acc WOR al Pro Regul FOTA 45	AN ice ar cess LD per atic
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, I Rights Neutra in a Global Era REFERENCES 1. Colin	APACITY TO CONNECTIVITY: NETWOR IECTION	ing Inter oute Resc SERVI rming U RAVE N acing Inte s - Green UTORIA 0 Regula	CE -7 nivers: IEW V ellectu n ICT- AL / tion H	ction r - Frends al Acc al Acc WOR al Pro Regul Regul FOTA 45	AN ice ar cess LD per atic
UNIT III FROM CA INTERCONN Introduction-A Cross-border In UNIT IV FROM AVAI Approaches-Po Strategies for I UNIT V A DIGITAL I Convergence, I Rights Neutra in a Global Era REFERENCES 1. Colin Tenth	APACITY TO CONNECTIVITY: NETWOR IECTION ccess and Interconnection -Forms of Interconnection-Settinterconnection-New Paradigms and New Challenges- Disp ILABILITY TO USE: UNIVERSAL ACCESS AND Dicy Rationale-Types of Universal Service Regimes-Refor Developing Economies -Digital Literacy and e-Inclusion - FUTURE: REGULATORY CHALLENGES IN A BE Ubiquity, and Web 2.0 - Regulating Digital Content- Balantality of Access- Protecting Privacy- Cybersecurity Concern I Image: Comparison of the second sec	ing Inter oute Resc SERVI rming U RAVE N icing Inte s - Green UTORIA 0 Regula or Reco	CE -7 nivers: EEW Vellectu n ICT- NL / tion H nstruc	ction r - Frends al Acc al Acc WOR al Pro Regul Regul FOTA 45	AN ice an cess LD per atio

SUBC	ODE	SUB NAME	L	Т	P	C
YWC2	.06	RADIO FREQUENCY SYSTEMS LAB	0	0	1	1
1.	Directional	coupler				
2.	Circulator					
3.	Isolator					
4.	Attenuator					
5.	Slotted line	e bench				
6.	Microwave	e horn antenna				
7.	Directional	Simulation of Planar Transmission Lines and matching ne	etwork			
8.	Simulation	of Microwave Filters				
9.	Couplers an	nd Power dividers				
10.	Patch anten	nna				